Glasnik Matematicki, Vol. 55, No. 2 (2020), 267-276.

FURTHER RESULTS ON COMMON PROPERTIES OF THE PRODUCTS AC AND BD

Qingping Zeng, Kai Yan and Zhenying Wu

College of Computer and Information Sciences, Institute of Applied Mathematics, Fujian Agriculture and Forestry University, 350002 Fuzhou, P.R. China
e-mail: zqpping2003@163.com

College of Mathematics and Computer Science, Fuzhou University, 350108 Fuzhou, P.R. China
e-mail: yklolxj@163.com

College of Mathematics and Informatics, Fujian Normal University, 350117 Fuzhou, P.R. China
e-mail: zhenyingwu2011@163.com


Abstract.   In this paper, we continue to investigate common properties of the products ac and bd in various categories under the assumption acd=dbd and dba=aca. These properties include generalized strongly Drazin invertibility and generalized Hirano invertibility in rings, abstract index of Fredholm elements and B-Fredholm elements in the Banach algebra context, complementability of kernels and ranges for bounded linear operators on Banach spaces.

2010 Mathematics Subject Classification.   15A09, 16U99, 47A05, 47A53

Key words and phrases.   Jacobson's lemma, generalized inverse, complementability, index


Full text (PDF) (free access)

https://doi.org/10.3336/gm.55.2.07


References:

  1. H.Y. Chen and M. Sheibani, Generalized Hirano inverses in rings, Comm. Algebra 47 (2019), 2967-2978.
    MathSciNet     CrossRef

  2. P. Aiena, Fredholm and local spectral theory, with applications to multipliers, Kluwer Academic Publishers, Dordrecht, 2004.
    MathSciNet    

  3. B.A. Barnes, The Fredholm elements of a ring, Canadian J. Math. 21 (1969), 84-95.
    MathSciNet     CrossRef

  4. M. Berkani, B-Fredholm elements in rings and algebras, Publ. Math. Debrecen 92 (2018), 171-181.
    MathSciNet     CrossRef

  5. M. Berkani, A trace formula for the index of B-Fredholm operators, Proc. Edinb. Math. Soc. (2) 61 (2018), 1063-1068.
    MathSciNet     CrossRef

  6. N. Castro-González, C. Mendes-Araújo and P. Patricio, Generalized inverses of a sum in rings, Bull. Aust. Math. Soc. 82 (2010), 156-164.
    MathSciNet     CrossRef

  7. G. Corach, B.P. Duggal and R.E. Harte, Extensions of Jacobson's lemma, Comm. Algebra 41 (2013), 520-531.
    MathSciNet     CrossRef

  8. D. Cvetković-Ilić and R.E. Harte, On Jacobson's lemma and Drazin invertibility, Appl. Math. Lett. 23 (2010), 417-420.
    MathSciNet     CrossRef

  9. M.P. Drazin, Pseudo-inverses in associative rings and semigroups, Amer. Math. Monthly 65 (1958), 506-514.
    MathSciNet     CrossRef

  10. J.J. Grobler and H. Raubenheimer, The index for Fredholm elements in a Banach algebra via a trace, Studia Math. 187 (2008), 281-297.
    MathSciNet     CrossRef

  11. O. Gürgün, Properties of generalized strongly Drazin invertible elements in general rings, J. Algebra Appl. 16 (2017), 1750207, 13 pp.
    MathSciNet     CrossRef

  12. R.E. Harte, On quasinilpotents in rings, Panamer. Math. J. 1 (1991), 10-16.
    MathSciNet    

  13. J.J. Koliha and P. Patrício, Elements of rings with equal spectral idempotents, J. Aust. Math. Soc. 72 (2002), 137-152.
    MathSciNet     CrossRef

  14. T.Y. Lam and P.P. Nielsen, Jacobson's lemma for Drazin inverses, in: Ring theory and its applications, AMS, Providence, 2014, 185-195.
    MathSciNet     CrossRef

  15. D. Mosić, Extensions of Jacobson's lemma for Drazin inverses, Aequationes Math. 91 (2017), 419-428.
    MathSciNet     CrossRef

  16. P. Patrício and R.E. Hartwig, The link between regularity and strong-pi-regularity, J. Aust. Math. Soc. 89 (2010), 17-22.
    MathSciNet     CrossRef

  17. P. Patrício and A. Veloso da Costa, On the Drazin index of regular elements, Cent. Eur. J. Math. 7 (2009), 200-205.
    MathSciNet     CrossRef

  18. K. Yan, Q.P. Zeng and Y.C. Zhu, Generalized Jacobson's lemma for Drazin inverses and its applications, Linear Multilinear Algebra 68 (2020), 81-93.
    MathSciNet     CrossRef

  19. Q.P. Zeng, Z.Y. Wu and Y.X. Wen, New extensions of Cline's formula for generalized inverses, Filomat 31 (2017), 1973-1980.
    MathSciNet     CrossRef

  20. Q.P. Zeng, K. Yan and S.F. Zhang, New results on common properties of the products AC and BA, II, Math. Nachr. 293 (2020), 1629-1635.
    MathSciNet     CrossRef

  21. Q.P. Zeng and H.J. Zhong, Common properties of bounded linear operators AC and BA: spectral theory, Math. Nachr. 287 (2014), 717-725.
    MathSciNet     CrossRef

  22. Q.P. Zeng and H.J. Zhong, Common properties of bounded linear operators AC and BA: Local spectral theory, J. Math. Anal. Appl. 414 (2014), 553-560.
    MathSciNet     CrossRef

  23. Q.P. Zeng and H.J. Zhong, New results on common properties of the products AC and BA, J. Math. Anal. Appl. 427 (2015), 830-840.
    MathSciNet     CrossRef

  24. G.F. Zhuang, J.L. Chen and J. Cui, Jacobson's lemma for the generalized Drazin inverse, Linear Algebra Appl. 436 (2012), 742-746.
    MathSciNet     CrossRef

Glasnik Matematicki Home Page