Glasnik Matematicki, Vol. 55, No. 2 (2020), 267-276.
FURTHER RESULTS ON COMMON PROPERTIES OF THE PRODUCTS AC AND BD
Qingping Zeng, Kai Yan and Zhenying Wu
College of Computer and Information Sciences, Institute of Applied Mathematics, Fujian Agriculture and Forestry University, 350002 Fuzhou, P.R. China
e-mail: zqpping2003@163.com
College of Mathematics and Computer Science, Fuzhou University, 350108 Fuzhou, P.R. China
e-mail: yklolxj@163.com
College of Mathematics and Informatics, Fujian Normal University, 350117 Fuzhou, P.R. China
e-mail: zhenyingwu2011@163.com
Abstract.
In this paper, we continue to investigate common properties of the products ac and bd in various categories under the assumption acd=dbd and dba=aca. These properties include generalized strongly Drazin invertibility and generalized Hirano invertibility in rings, abstract index of Fredholm elements and B-Fredholm elements in the Banach algebra context, complementability of kernels and ranges for bounded linear operators on Banach spaces.
2010 Mathematics Subject Classification. 15A09, 16U99, 47A05, 47A53
Key words and phrases. Jacobson's lemma, generalized inverse, complementability, index
Full text (PDF) (free access)
https://doi.org/10.3336/gm.55.2.07
References:
- H.Y. Chen and M. Sheibani,
Generalized Hirano inverses in rings,
Comm. Algebra 47 (2019), 2967-2978.
MathSciNet
CrossRef
- P. Aiena,
Fredholm and local spectral theory, with applications to
multipliers, Kluwer Academic Publishers, Dordrecht, 2004.
MathSciNet
- B.A. Barnes,
The Fredholm elements of a ring,
Canadian J. Math. 21 (1969), 84-95.
MathSciNet
CrossRef
- M. Berkani,
B-Fredholm elements in rings and algebras,
Publ. Math. Debrecen 92 (2018), 171-181.
MathSciNet
CrossRef
- M. Berkani,
A trace formula for the index of B-Fredholm operators,
Proc. Edinb. Math. Soc. (2) 61 (2018), 1063-1068.
MathSciNet
CrossRef
- N. Castro-González, C. Mendes-Araújo and P. Patricio,
Generalized inverses of a sum in rings,
Bull. Aust. Math. Soc. 82 (2010), 156-164.
MathSciNet
CrossRef
- G. Corach, B.P. Duggal and R.E. Harte, Extensions of Jacobson's lemma, Comm. Algebra 41 (2013), 520-531.
MathSciNet
CrossRef
- D. Cvetković-Ilić and R.E. Harte, On Jacobson's lemma and Drazin invertibility, Appl. Math. Lett. 23 (2010), 417-420.
MathSciNet
CrossRef
- M.P. Drazin, Pseudo-inverses in associative rings and semigroups, Amer. Math. Monthly 65 (1958), 506-514.
MathSciNet
CrossRef
- J.J. Grobler and H. Raubenheimer, The index for Fredholm elements in a Banach algebra via a trace,
Studia Math. 187 (2008), 281-297.
MathSciNet
CrossRef
- O. Gürgün, Properties of generalized strongly Drazin invertible elements in general rings,
J. Algebra Appl. 16 (2017), 1750207, 13 pp.
MathSciNet
CrossRef
- R.E. Harte, On quasinilpotents in rings, Panamer. Math. J. 1 (1991), 10-16.
MathSciNet
- J.J. Koliha and P. Patrício, Elements of rings with equal spectral idempotents,
J. Aust. Math. Soc. 72 (2002), 137-152.
MathSciNet
CrossRef
- T.Y. Lam and P.P. Nielsen, Jacobson's lemma for Drazin inverses, in: Ring theory and its applications, AMS, Providence, 2014, 185-195.
MathSciNet
CrossRef
- D. Mosić, Extensions of Jacobson's lemma for Drazin inverses, Aequationes Math. 91 (2017), 419-428.
MathSciNet
CrossRef
- P. Patrício and R.E. Hartwig, The link between regularity and strong-pi-regularity,
J. Aust. Math. Soc. 89 (2010), 17-22.
MathSciNet
CrossRef
- P. Patrício and A. Veloso da Costa, On the Drazin index of regular elements,
Cent. Eur. J. Math. 7 (2009), 200-205.
MathSciNet
CrossRef
- K. Yan, Q.P. Zeng and Y.C. Zhu, Generalized Jacobson's lemma for Drazin inverses and its applications,
Linear Multilinear Algebra 68 (2020), 81-93.
MathSciNet
CrossRef
- Q.P. Zeng, Z.Y. Wu and Y.X. Wen, New extensions of Cline's formula for generalized inverses,
Filomat 31 (2017), 1973-1980.
MathSciNet
CrossRef
- Q.P. Zeng, K. Yan and S.F. Zhang, New results on common properties of the products AC and BA, II, Math. Nachr. 293 (2020), 1629-1635.
MathSciNet
CrossRef
- Q.P. Zeng and H.J. Zhong, Common properties of bounded linear operators AC and BA: spectral theory, Math. Nachr. 287 (2014), 717-725.
MathSciNet
CrossRef
- Q.P. Zeng and H.J. Zhong, Common properties of bounded linear operators AC and BA: Local spectral theory, J. Math. Anal. Appl. 414 (2014), 553-560.
MathSciNet
CrossRef
- Q.P. Zeng and H.J. Zhong, New results on common properties of the products AC and BA,
J. Math. Anal. Appl. 427 (2015), 830-840.
MathSciNet
CrossRef
- G.F. Zhuang, J.L. Chen and J. Cui, Jacobson's lemma for the generalized Drazin inverse,
Linear Algebra Appl. 436 (2012), 742-746.
MathSciNet
CrossRef
Glasnik Matematicki Home Page