Glasnik Matematicki, Vol. 55, No. 2 (2020), 253-265.
DIRICHLET PRODUCT AND THE MULTIPLE DIRICHLET SERIES OVER FUNCTION FIELDS
Yoshinori Hamahata
Department of Applied Mathematics,
Okayama University of Science, Ridai-cho 1-1,
Okayama, 700-0005, Japan
e-mail: hamahata@xmath.ous.ac.jp
Abstract.
We define the Dirichlet product for multiple arithmetic functions
over function fields and consider the ring of the multiple Dirichlet series
over function fields.
We apply our results to absolutely convergent multiple Dirichlet series
and obtain some zero-free regions for them.
2010 Mathematics Subject Classification. 11R58, 11A25, 11M32, 11M41
Key words and phrases. Arithmetic function, Dirichlet product, Dirichlet series, zeta function, function field
Full text (PDF) (free access)
https://doi.org/10.3336/gm.55.2.06
References:
- E. Alkan, A. Zaharescu and M. Zaki,
Arithmetical functions in several variables,
Int. J. Number Theory 1 (2005), 383-399.
MathSciNet
CrossRef
- E. Alkan, A. Zaharescu and M. Zaki,
Multidimensional averages and Dirichlet convolution,
Manuscripta Math. 123 (2007), 251-267.
MathSciNet
CrossRef
- T. Apostol,
Introduction to analytic number theory,
Springer, 1976.
MathSciNet
- E. Cashwell and C. Everett,
The ring of number-theoretic functions,
Pacific J. Math. 9 (1959), 975-985.
MathSciNet
CrossRef
- P. Haukkanen,
Derivation of arithmetical functions under the Dirichlet
convolution,
Int. J. Number Theory 14 (2018), 1257-1264.
MathSciNet
CrossRef
- R. Masri,
Multiple zeta values over global function fields,
Proc. Sympos. Pure Math. 75, 2006, 157-175.
MathSciNet
CrossRef
- K. Matsumoto,
On analytic continuation of various multiple zeta-functions,
In: Number Theory for the Millennium, Vol. 2, A. K. Peters, 2002, pp. 417-440.
MathSciNet
- K. Matsumoto,
On Mordell-Tornheim and other multiple zeta-functions,
In: Proceedings of the Session in Analytic Number Theory and Diophantine Equations, 2003, No. 25, 17pp.
MathSciNet
- T. Onozuka,
The multiple Dirichlet product and the multiple
Dirichlet series,
Int. J. Number Theory 13 (2017), 2181-2193.
MathSciNet
CrossRef
- M. Rosen,
Number theory in function fields,
Springer, 2002.
MathSciNet
CrossRef
- R. Sivaramakrishnan,
Classical theory of arithmetic functions,
Marcel Dekker, Inc., New York, 1989.
MathSciNet
- D. Thakur,
Function field arithmetic,
World Scientific, River Edge, 2004.
MathSciNet
CrossRef
- L. Tóth,
Multiplicative arithmetic functions of several
variables: a survey,
In: T. Rassias and P. Pardalos (eds.), Mathematics without boundaries,
Springer, 2014, 483-514.
MathSciNet
Glasnik Matematicki Home Page