Glasnik Matematicki, Vol. 55, No. 2 (2020), 203-235.
ON REPRESENTATIONS OF REDUCTIVE P-ADIC GROUPS OVER ℚ-ALGEBRAS
Goran Muić
Department of Mathematics, Faculty of Science, University of Zagreb,
Bijenička cesta 30, 10000 Zagreb,
Croatia
e-mail: gmuic@math.hr
Abstract.
In this paper we study certain category of smooth modules for reductive p-adic groups analogous to
the usual smooth complex representations but with the field of complex numbers replaced by a ℚ-algebra.
We prove some fundamental results in these settings, and as an example we give a classification of admissible unramified irreducible
representations using the reduction to the complex case.
2010 Mathematics Subject Classification. 11E70, 22E50
Key words and phrases. Reductive p-adic groups, ℚ-admissible representations, Hecke algebras
Full text (PDF) (free access)
https://doi.org/10.3336/gm.55.2.04
References:
- J. Bernstein, Le `centre'
de Bernstein, in: Représentations des groupes réductif sur un corps
local, ed. P. Deligne, Herman, Paris, 1984, 1-32.
MathSciNet
- J. Bernstein, Draft of: Representations of p-adic groups, lectures at Harvard University, 1992, written by Karl E. Rumelhart.
- J. Bernstein and A. V. Zelevinsky, Representations of
the group GL(n,F), where F is a local non-Archimedean field
(Russian), Uspehi Mat. Nauk 31 (1976), 5-70.
MathSciNet
- I. N. Bernstein and A. V. Zelevinsky, Induced
representations of reductive p-adic groups I,
Ann. Sci. École Norm Sup. (4) 10 (1977), 441-472.
MathSciNet
CrossRef
-
J. N. Bernstein, P. Deligne and D. Kazhdan, Trace Paley-Wiener theorem for
reductive p-adic groups, J. Analyse Math. 47 (1986), 180-192.
MathSciNet
CrossRef
- A. Borel, Linear algebraic group, second edition,
Graduate Texts in Mathematics 126, Springer-Verlag, New York, 1991.
MathSciNet
CrossRef
- P. Cartier, Representations of p-adic groups: a survey, in: Automorphic forms,
representations and L-functions
(Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977),
Part 1, Proc. Sympos. Pure Math., XXXIII, AMS, Providence, 1979, 111-155.
MathSciNet
- W. Casselman, Introduction to the theory of admissible representations
of p-adic reductive groups, preprint.
- C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras. Reprint of the 1962 original, AMS Chelsea Publishing, Providence, 2006.
MathSciNet
CrossRef
- B. H. Gross, On the Satake isomorphism, preprint, http://www.math.harvard.edu/ gross/preprints/sat.pdf.
- G. Henniart and M.-F. Vignéras, A Satake isomorphism for representations modulo p of reductive groups over local fields, J. Reine Angew. Math. 701 (2015), 33-75.
MathSciNet
CrossRef
- G. Henniart and M.-F. Vignéras, Representations of a p-adic group in characteristic p, in: Proceedings of Symposia in Pure Mathematics, Volume 101, Providence, 2019.
MathSciNet
CrossRef
- S. Lang, Algebra, Second edition, Addison-Wesley Publishing Company, Reading, 1984.
MathSciNet
- H. Matsumura, Commutative ring theory, Translated from the Japanese by M. Reid, Second edition, Cambridge University Press, Cambridge, 1989.
MathSciNet
- J. Newton and J. A. Thorne, Torsion Galois representations over CM fields and Hecke algebras in the derived category,
Forum Math. Sigma 4 (2016), e21, 88 pp.
MathSciNet
CrossRef
- D. Renard, Représentations des groupes réductifs p-adiques, Société Mathématique de France, Paris, 2010.
MathSciNet
- A. Robert, Modular representations of the group GL(2) over a local field, J. Algebra 22 (1972), 386-405.
MathSciNet
- M. Tadić, On interactions between harmonic analysis and the theory of automorphic forms, Automorphic Representations and L-functions, Tata Inst. Fund. Res., Mumbai, 2013, 591-650.
MathSciNet
- M. Tadić, On unitarizability in the case of classical p-adic groups,
in: Geometric aspects of the trace formula, Simons Symp., Springer, Cham, 2018, 405-453.
MathSciNet
CrossRef
- J. Tits, Reductive groups over local fields, in: Automorphic forms,
representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977),
Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, 1979, 29-69.
MathSciNet
- M.-F. Vignéras, Représentations l-modulaires d'un groupe réductif p-adique avec l≠ p,
Birkhäuser Boston, Inc., Boston, 1996.
MathSciNet
- M.-F. Vignéras, A letter to the author, May 15, 2019.
Glasnik Matematicki Home Page