Glasnik Matematicki, Vol. 55, No. 2 (2020), 203-235.

ON REPRESENTATIONS OF REDUCTIVE P-ADIC GROUPS OVER -ALGEBRAS

Goran Muić

Department of Mathematics, Faculty of Science, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, Croatia
e-mail: gmuic@math.hr


Abstract.   In this paper we study certain category of smooth modules for reductive p-adic groups analogous to the usual smooth complex representations but with the field of complex numbers replaced by a -algebra. We prove some fundamental results in these settings, and as an example we give a classification of admissible unramified irreducible representations using the reduction to the complex case.

2010 Mathematics Subject Classification.   11E70, 22E50

Key words and phrases.   Reductive p-adic groups, -admissible representations, Hecke algebras


Full text (PDF) (free access)

https://doi.org/10.3336/gm.55.2.04


References:

  1. J. Bernstein, Le `centre' de Bernstein, in: Représentations des groupes réductif sur un corps local, ed. P. Deligne, Herman, Paris, 1984, 1-32.
    MathSciNet    

  2. J. Bernstein, Draft of: Representations of p-adic groups, lectures at Harvard University, 1992, written by Karl E. Rumelhart.

  3. J. Bernstein and A. V. Zelevinsky, Representations of the group GL(n,F), where F is a local non-Archimedean field (Russian), Uspehi Mat. Nauk 31 (1976), 5-70.
    MathSciNet    

  4. I. N. Bernstein and A. V. Zelevinsky, Induced representations of reductive p-adic groups I, Ann. Sci. École Norm Sup. (4) 10 (1977), 441-472.
    MathSciNet     CrossRef

  5. J. N. Bernstein, P. Deligne and D. Kazhdan, Trace Paley-Wiener theorem for reductive p-adic groups, J. Analyse Math. 47 (1986), 180-192.
    MathSciNet     CrossRef

  6. A. Borel, Linear algebraic group, second edition, Graduate Texts in Mathematics 126, Springer-Verlag, New York, 1991.
    MathSciNet     CrossRef

  7. P. Cartier, Representations of p-adic groups: a survey, in: Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, Proc. Sympos. Pure Math., XXXIII, AMS, Providence, 1979, 111-155.
    MathSciNet    

  8. W. Casselman, Introduction to the theory of admissible representations of p-adic reductive groups, preprint.

  9. C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras. Reprint of the 1962 original, AMS Chelsea Publishing, Providence, 2006.
    MathSciNet     CrossRef

  10. B. H. Gross, On the Satake isomorphism, preprint, http://www.math.harvard.edu/ gross/preprints/sat.pdf.

  11. G. Henniart and M.-F. Vignéras, A Satake isomorphism for representations modulo p of reductive groups over local fields, J. Reine Angew. Math. 701 (2015), 33-75.
    MathSciNet     CrossRef

  12. G. Henniart and M.-F. Vignéras, Representations of a p-adic group in characteristic p, in: Proceedings of Symposia in Pure Mathematics, Volume 101, Providence, 2019.
    MathSciNet     CrossRef

  13. S. Lang, Algebra, Second edition, Addison-Wesley Publishing Company, Reading, 1984.
    MathSciNet    

  14. H. Matsumura, Commutative ring theory, Translated from the Japanese by M. Reid, Second edition, Cambridge University Press, Cambridge, 1989.
    MathSciNet    

  15. J. Newton and J. A. Thorne, Torsion Galois representations over CM fields and Hecke algebras in the derived category, Forum Math. Sigma 4 (2016), e21, 88 pp.
    MathSciNet     CrossRef

  16. D. Renard, Représentations des groupes réductifs p-adiques, Société Mathématique de France, Paris, 2010.
    MathSciNet    

  17. A. Robert, Modular representations of the group GL(2) over a local field, J. Algebra 22 (1972), 386-405.
    MathSciNet    

  18. M. Tadić, On interactions between harmonic analysis and the theory of automorphic forms, Automorphic Representations and L-functions, Tata Inst. Fund. Res., Mumbai, 2013, 591-650.
    MathSciNet    

  19. M. Tadić, On unitarizability in the case of classical p-adic groups, in: Geometric aspects of the trace formula, Simons Symp., Springer, Cham, 2018, 405-453.
    MathSciNet     CrossRef

  20. J. Tits, Reductive groups over local fields, in: Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, 1979, 29-69.
    MathSciNet    

  21. M.-F. Vignéras, Représentations l-modulaires d'un groupe réductif p-adique avec l≠ p, Birkhäuser Boston, Inc., Boston, 1996.
    MathSciNet    

  22. M.-F. Vignéras, A letter to the author, May 15, 2019.

Glasnik Matematicki Home Page