Glasnik Matematicki, Vol. 55, No. 2 (2020), 177-190.
ON SOME PARTIAL ORDERS ON A CERTAIN SUBSET OF THE POWER SET OF RINGS
Gregor Dolinar, Bojan Kuzma, Janko Marovt and Burcu Ungor
University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, SI-1000 Ljubljana, Slovenia
and
IMFM, Jadranska ulica 19, SI-1000 Ljubljana, Slovenia
e-mail: gregor.dolinar@fe.uni-lj.si
University of Primorska, Glagoljaška 8, SI-6000 Koper, Slovenia
and
IMFM, Jadranska ulica 19, SI-1000 Ljubljana, Slovenia
e-mail: bojan.kuzma@upr.si
University of Maribor, Faculty of Economics and Business, Razlagova 14, SI-2000 Maribor, Slovenia
and
IMFM, Jadranska ulica 19, SI-1000 Ljubljana, Slovenia
e-mail: janko.marovt@um.si
Ankara University, Faculty of Sciences, Department of Mathematics, 06100 Tandogan, Ankara, Turkey
e-mail: bungor@science.ankara.edu.tr
Abstract.
Let 𝓡 be a ring with identity and let 𝓙𝓡 be a collection of subsets of
𝓡 such that their left and right annihilators are generated by the same idempotent.
% from 𝓡.
We extend the notion of the sharp, the left-sharp, and the right-sharp partial orders to
𝓙𝓡, present equivalent definitions of these orders, and study their properties.
We also extend the concept of the core and the dual core orders to
𝓙𝓡, show that they are indeed partial orders when 𝓡 is a Baer
*-ring, and connect them with one-sided sharp and star partial orders.
2010 Mathematics Subject Classification. 06F25, 06A06, 15A09
Key words and phrases. Baer *-ring, sharp partial order, core partial order, star partial order, one-sided partial order
Full text (PDF) (free access)
https://doi.org/10.3336/gm.55.2.01
References:
- J. Antezana, C. Cano, I. Mosconi and D. Stojanoff, A note on
the star order in Hilbert spaces, Linear Multilinear Algebra 58
(2010), 1037-1051.
MathSciNet
CrossRef
- J. K. Baksalary and S. K. Mitra, Left-star and
right-star partial orderings, Linear Algebra Appl. 149 (1991),
73-89.
MathSciNet
CrossRef
- O. M. Baksalary and G. Trenkler, Core inverse of
matrices, Linear Multilinear Algebra 58 (2010), 681-697.
MathSciNet
CrossRef
- S. K. Berberian, Baer *-rings, Springer-Verlag, New
York, 1972.
MathSciNet
- D. S. Djordjević, D. S. Rakić and J. Marovt,
Minus partial order in Rickart rings, Publ. Math. Debrecen 87 (2015),
291-305.
MathSciNet
CrossRef
- G. Dolinar, A. E. Guterman and J. Marovt,
Monotone transformations on B(𝓗) with respect to the left-star
and the right-star partial order, Math. Inequal. Appl. 17 (2014), 573-589.
MathSciNet
CrossRef
- G. Dolinar and J. Marovt, Star partial order on $B(𝓗)$, Linear Algebra Appl. 434 (2011), 319-326.
MathSciNet
CrossRef
- M. P. Drazin, Natural structures on semigroups with
involution, Bull. Amer. Math. Soc. 84 (1978), 139-141.
MathSciNet
CrossRef
- R. E. Hartwig, How to partially order regular elements,
Math. Japon. 25 (1980), 1-13.
MathSciNet
- R. E. Hartwig and J. Luh, A note on the group structure on
unit regular ring elements, Pacific J. Math. 71 (1977), 449-461.
MathSciNet
CrossRef
- A. Herrero and N. Thome, Sharp partial order and linear autonomous systems,
Appl. Math. Comput. 366 (2020), 124736, 11 pp.
MathSciNet
CrossRef
- I. Kaplansky, Rings of operators, Benjamin, New York,
1968.
MathSciNet
- S. B. Malik, Some more properties of core partial order,
Appl. Math. Comput. 221 (2013), 192-201.
MathSciNet
CrossRef
- S. B. Malik, L. Rueda and N. Thome, Further properties on
the core partial order and other matrix partial orders, Linear Multilinear
Algebra 62 (2014), 1629-1648.
MathSciNet
CrossRef
- J. Marovt, On partial orders in Rickart rings, Linear
Multilinear Algebra 63 (2015), 1707-1723.
MathSciNet
CrossRef
- J. Marovt, One-sided sharp order in rings, J. Algebra
Appl. 15 (2016), 1650161, 10 pp.
MathSciNet
CrossRef
- J. Marovt, D. S. Rakić and D. S. Djordjević,
Star, left-star, and right-star partial orders in Rickart *-rings,
Linear Multilinear Algebra 63 (2015), 343-365.
MathSciNet
CrossRef
- S. K. Mitra, On group inverses and the sharp order,
Linear Algebra Appl. 92 (1987), 17-37.
MathSciNet
CrossRef
- S. K. Mitra, Matrix partial order through generalized
inverses: unified theory, Linear Algebra Appl. 148 (1991), 237-263.
MathSciNet
CrossRef
- S. K. Mitra, P. Bhimasankaram and S. B. Malik, Matrix
partial orders, shorted operators and applications, World Scientific, Hackensack,
2010.
MathSciNet
CrossRef
- M. Z. Nashed (ed.), Generalized inverses and applications,
Academic Press, New York-London, 1976.
MathSciNet
- D. S. Rakić, Generalization of sharp and core partial order using annihilators,
Banach J. Math. Anal. 9 (2015), 228-242.
MathSciNet
CrossRef
- P. Šemrl, Automorphisms of B(𝓗) with
respect to minus partial order, J. Math. Anal. Appl. 369 (2010),
205-213.
MathSciNet
CrossRef
- B. Ungor, S. Halicioglu, A. Harmanci and J. Marovt, Partial
orders on the power sets of Baer rings, J. Algebra Appl. 19 (2020), 2050011, 14 pp.
MathSciNet
CrossRef
Glasnik Matematicki Home Page