Glasnik Matematicki, Vol. 55, No. 1 (2020), 101-111.
SCALAR CONSERVATION LAWS WITH CHARATHEODORY FLUX REVISITED
Nikola Konatar
Department of Natural Sciences and Mathematics, Faculty of Mathematics and Natural Sciences, University of Montenegro, Džordža Vašingtona bb, 81000 Podgorica, Crna Gora
e-mail: nikola.k@ucg.ac.me
Abstract.
We introduce a new approach for dealing with scalar conservation laws with the flux discontinuous with respect to the space variable and merely continuous with respect to the state variable which employs a variant of the kinetic formulation. We use it to improve results about the existence of solutions for non-degenerate scalar conservation laws with Caratheodory flux under a variant of non-degeneracy conditions.
2010 Mathematics Subject Classification. 35L65, 65M25
Key words and phrases. Multidimensional scalar conservation law, discontinuous flux, existence, kinetic formulation, Caratheodory flux
Full text (PDF) (free access)
https://doi.org/10.3336/gm.55.1.09
References:
- Adimurthi, S. Mishra and G.D.V. Gowda, Optimal entropy solutions for conservation laws with discontinuous flux, J.Hyperbolic Differ. Equ. 2 (2005), 783-837.
MathSciNet
CrossRef
- B. Andreianov and D. Mitrovic, Entropy conditions for scalar conservation laws with discontinuous flux revisited, Ann. Inst. H. Poincaré Anal. Non Linéaire 32 (2015), 1307-1335.
MathSciNet
CrossRef
-
B. Andreianov, K. H. Karlsen and N. H. Risebro,
A theory of L1-dissipative solvers for scalar conservation laws with discontinuous flux,
Arch. Ration. Mech. Anal. 201 (2011), 27-86.
MathSciNet
CrossRef
- N. Antonić, M. Erceg and M. Lazar, Localisation principle for one-scale H-measures, J. Funct. Anal. 272 (2017), 3410-3454.
MathSciNet
CrossRef
- N. Antonić and M. Lazar, Parabolic H-measures, J. Funct. Anal. 265 (2013), 1190-1239.
MathSciNet
CrossRef
- N. Antonić and D. Mitrović, H-distributions, an extension of H-measures to an lp-lq setting, Abstr. Appl. Anal. 2011, Article ID 901084, 12 pp.
MathSciNet
CrossRef
- R. Bürger, K. H. Karlsen, H. Torres and J. Towers, Second-order schemes for conservation laws with discontinuous flux modelling clarifier-thickener units, Numer. Math. 116 (2010), 579-617.
MathSciNet
CrossRef
- R. Colombo, K. H. Karlsen, F. Lagoutiere and A. Marson, Special issue on contemporary topics in conservation laws, Netw. Heterog. Media 11 (2016), i-ii.
MathSciNet
CrossRef
- P. Gérard, Microlocal defect measures, Comm. Partial Differential Equations 16 (1991), 1761-1794.
MathSciNet
CrossRef
- M. Garavello, R. Natalini, B. Piccoli and A. Terracina, Conservation laws with discontinuous flux, Netw. Heter. Media 2 (2007), 159-179.
MathSciNet
CrossRef
- L. Grafakos, Classical Fourier analysis, Springer, New York, 2008.
MathSciNet
-
K. H. Karlsen, N. H. Risebro and J. Towers,
L1-stability for entropy solutions of nonlinear degenerate parabolic convection-diffusion equations with discontinuous coefficients,
Skr. K. Nor. Vidensk. Selsk. 3 (2003), 1-49.
MathSciNet
-
S. N. Kruzhkov,
First order quasilinear equations with several independent variables,
Mat. Sb. (N.S.) 81(123) (1970), 228-255.
MathSciNet
- M. Lazar and D. Mitrović, Velocity averaging - a general framework, Dynamics of PDEs 9 (2012) 239-260.
MathSciNet
CrossRef
- M. Lazar and D. Mitrović, On an extension of a bilinear functional on Lp(ℝn)× E to Bôchner spaces with an application to velocity averaging, C. R. Math. Acad. Sci. Paris 351 (2013), 261-264.
MathSciNet
- M. Lazar and D. Mitrović, Existence of solutions for a scalar conservation law with a flux of low regularity, Electron. J. Differential Equations 2016, No. 325, 18 pp.
MathSciNet
- M. Lazar and D. Mitrović, On a new class of functional spaces with application to the velocity averaging, Glas. Mat. Ser. III 52(72) (2017), 115-130.
MathSciNet
CrossRef
- P.L. Lions, B. Perthame and E. Tadmor, A kinetic formulation of multidimensional scalar conservation law and related equations, J. Amer. Math. Soc. 7 (1994), 169-191.
MathSciNet
CrossRef
- M. Mišur and D. Mitrović, On a generalization of compensated compactness in the Lp-Lq setting, J. Funct. Anal. 268 (2015), 1904-1927.
MathSciNet
CrossRef
- W. Neves, E.Yu. Panov and J. Silva, Strong traces for conservation laws with general nonautonomous flux, SIAM J. Math. Anal. 50 (2018), 6049-6081.
MathSciNet
CrossRef
- E. Yu. Panov, Generalized solutions of the Cauchy problem for quasilinear conservation laws, Dissertation Can. Phys.-Math. Sci., Mosk. Gos. Univ., Moscow, 1991 (Russian).
- E.Yu. Panov, On existence and uniqueness of entropy solutions to the Cauchy problem for a conservation law with discontinuous flux, J. Hyperbolic Differ. Equ. 6 (2009), 525-548.
MathSciNet
CrossRef
- E.Yu. Panov, Existence and strong pre-compactness properties for entropy solutions of a first-order quasilinear equation with discontinuous flux, Arch. Ration. Mech. Anal. 195 (2010), 643-673.
MathSciNet
CrossRef
- E.Yu. Panov, Ultra-parabolic H-measures and compensated compactness, Ann. Inst. H. Poincaré Anal. Non Linéaire 28 (2011), 47-62.
MathSciNet
CrossRef
- E.Yu. Panov, Ultra-parabolic H-measures and compensated compactness, Ann. Inst. H.Poincaré Anal. Non Linéare 28 (2011), 47-62.
- F. Rindler, Directional oscillations, concentrations, and compensated compactness via microlocal compactness forms, Arch. Ration. Mech. Anal. 215 (2015), 1-63.
MathSciNet
CrossRef
- L. Tartar, H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations, Proc. Roy. Soc. Edinburgh Sect. A 115 (1990), 193-230.
MathSciNet
CrossRef
- L. Tartar, Multi-scales H-measures, Discrete Contin. Dyn. Syst. Ser. S 8 (2015) 77-90.
MathSciNet
CrossRef
-
B. Temple,
Global solution of the Cauchy problem for a class of 2× 2 nonstrictly hyperbolic conservation laws,
Adv. in Appl. Math. 3 (1982), 335-375.
MathSciNet
CrossRef
Glasnik Matematicki Home Page