Glasnik Matematicki, Vol. 55, No. 1 (2020), 85-91.
CENTERS OF SUBGROUPS OF BIG MAPPING CLASS GROUPS AND THE TITS ALTERNATIVE
Justin Lanier and Marissa Loving
School of Mathematics, Georgia Institute of Technology, 686 Cherry St., Atlanta, GA 30332, USA
e-mail: jlanier8@gatech.edu
Department of Mathematics, University of Illinois, 1409 W. Green Street, Urbana, IL 61801, USA
e-mail: mloving2@illinois.edu
Abstract.
In this note we show that many subgroups of mapping class groups of infinite-type surfaces without boundary have trivial centers, including all normal subgroups. Using similar techniques, we show that every nontrivial normal subgroup of a big mapping class group contains a nonabelian free group. In contrast, we show that no big mapping class group satisfies the strong Tits alternative enjoyed by finite-type mapping class groups. We also give examples of big mapping class groups that fail to satisfy even the classical Tits alternative; consequently, these examples are not linear.
2010 Mathematics Subject Classification. 20F34, 57M60, 37E30
Key words and phrases. Mapping class groups, normal subgroups, free subgroups, Tits alternative, centers
Full text (PDF) (free access)
https://doi.org/10.3336/gm.55.1.07
References:
-
D. Allcock,
Hyperbolic surfaces with prescribed infinite symmetry groups,
Proc. Amer. Math. Soc. 134 (2006), 3057-3059.
MathSciNet
CrossRef
-
T. Brendle and D. Margalit,
Normal subgroups of mapping class groups and the metaconjecture of Ivanov,
J. Amer. Math. Soc. 32 (2019), 1009-1070.
MathSciNet
CrossRef
-
M. G. Brin and C. C. Squier,
Groups of piecewise linear homeomorphisms of the real line,
Invent. Math. 79 (1985), 485-498.
MathSciNet
CrossRef
-
B. Farb and D. Margalit,
A primer on mapping class groups,
Princeton University Press, Princeton, 2012.
MathSciNet
-
L. Greenberg,
Maximal groups and signatures,
Ann. of Math. Studies, No. 79, 1974, 207-226.
MathSciNet
-
S. Hurtado and E. Militon,
Distortion and Tits alternative in smooth mapping class groups,
Trans. Amer. Math. Soc. 371 (2019), 8587-8623.
MathSciNet
CrossRef
-
N. V. Ivanov,
Algebraic properties of the Teichmüller modular group,
Dokl. Akad. Nauk SSSR 275 (1984), 786-789.
MathSciNet
-
B. Kerékjártó,
Vorlesungen über Topologie. I.
Springer, Berlin, 1923.
-
S. Afton, S. Freedman, J. Lanier and L. Yin,
Generators, relations, and homomorphisms of big mapping class groups,
in preparation.
-
J. McCarthy,
A ``Tits-alternative'' for subgroups of surface mapping class
groups,
Trans. Amer. Math. Soc. 291 (1985), 583-612.
MathSciNet
CrossRef
-
J. Hernández Hernández, I. Morales and F. Valdez,
The Alexander method for infinite-type surfaces,
Michigan Math. J. 68 (2019), 743-753.
MathSciNet
CrossRef
-
L. Paris and D. Rolfsen,
Geometric subgroups of mapping class groups,
J. Reine Angew. Math. 521 (2000), 47-83.
MathSciNet
CrossRef
-
P. Patel and N. G. Vlamis,
Algebraic and topological properties of big mapping class groups,
Algebr. Geom. Topol. 18 (2018), 4109-4142.
MathSciNet
CrossRef
-
R. C. Penner,
A construction of pseudo-Anosov homeomorphisms,
Trans. Amer. Math. Soc. 310 (1988), 179-197.
MathSciNet
CrossRef
-
I. Richards,
On the classification of noncompact surfaces,
Trans. Amer. Math. Soc. 106 (1963), 259-269.
MathSciNet
CrossRef
-
J. Tits,
Free subgroups in linear groups,
J. Algebra 20 (1972), 250-270.
MathSciNet
CrossRef
-
J. Winkelmann,
Realizing countable groups as automorphism groups of Riemann
surfaces,
Doc. Math. 6 (2001), 413-417.
MathSciNet
Glasnik Matematicki Home Page