Glasnik Matematicki, Vol. 55, No. 1 (2020), 55-65.
EXTENSION OF THE FUNCTIONAL INDEPENDENCE OF THE RIEMANN ZETA-FUNCTION
Antanas Laurinčikas
Institute of Mathematics, Faculty of Mathematics and Informatics, Vilnius University, Naugarduko str. 24, LT-03225 Vilnius, Lithuania
e-mail: antanas.laurincikas@mif.vu.lt
Abstract.
In 1972, Voronin proved the functional independence of the Riemann zeta-function ζ(s), i. e., if the functions φj are continuous in ℂN and φ0(ζ(s), …, ζ(N-1)(s))+ ∙∙∙ + sn φn(ζ(s), …, ζ(N-1)(s)) ≡ 0, then φj≡ 0 for j=0,…, n. The problem goes back to Hilbert who obtained the algebraic-differential independence of ζ(s). In the paper, the functional independence of compositions F(ζ(s)) for some classes of operators F in the space of analytic functions is proved. For example, as a particular case, the functional independence of the function cosζ(s) follows.
2010 Mathematics Subject Classification. 11M06
Key words and phrases. Algebraic-differential independence, functional independence, Riemann zeta-function, space of analytic functions, universality
Full text (PDF) (free access)
https://doi.org/10.3336/gm.55.1.05
References:
- D. Hilbert,
Mathematical problems,
Bull. Amer. Math. Soc. 8 (1902), 437-479.
MathSciNet
CrossRef
- O. Hölder,
Über die Eigenschaft der Gammafunktion keiner algebraischen Differentialgleichung zu genügen,
Math. Ann. 28 (1887), 1-13.
- A. A. Karatsuba and S. M. Voronin, Walter de Gruyter, Berlin, 1992.
MathSciNet
CrossRef
- A. Laurinčikas,
Limit theorems for the Riemann Zeta-function, Kluwer, Dordrecht, Boston, London, 1996.
MathSciNet
CrossRef
- A. Laurinčikas,
Universality of the Riemann zeta-function,
J. Number Theory 130 (2010), 2323-2331.
MathSciNet
CrossRef
- A. Laurinčikas,
Universality of composite functions, in: Functions in number theory and their probabilistic aspects, RIMS Kôkyûroku Bessatsu B34 Res. Inst. Math. Sci. (RIMS), Kyoto, 2012. 191-204.
MathSciNet
- A. Laurinčikas,
On zeros of some analytic functions related to the Riemann zeta-function,
Glasn. Mat. Ser III. 48 (2013), 59-65.
MathSciNet
CrossRef
- A. Ostrowski,
Über Dirichletsche Reihen und algebraische Differentialgleichungen,
Math. Z. 8 (1920), 241-298.
MathSciNet
CrossRef
- A. G. Postnikov,
On the differential independence of Dirichlet series,
Doklady Akad. Nauk SSSR (N.S.) 66 (1949) 561-564 (Russian).
MathSciNet
- A. G. Postnikov,
A generalization of one of the Hilbert problems,
Doklady Akad. Nauk SSSR (N.S.) 107 (1956), 512-515 (Russian).
MathSciNet
- S. M. Voronin,
The distribution of the nonzero values of the Riemann ζ-function,
Trudy Math. Inst. Steklov 128 (1972), 131-150 (Russian).
MathSciNet
- S. M. Voronin,
The differential independence of ζ-functions,
Doklady Akad. Nauk SSSR (N.S.) 209 (1973), 1264-1266 (Russian).
MathSciNet
- S. M. Voronin,
A theorem on the ``universality'' of the Riemann zeta-function,
Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), 475-486 (Russian).
MathSciNet
- S. M. Voronin,
The functional independence of Dirichlet L-functions,
Acta Arith. 27 (1975), 493-503 (Russian).
MathSciNet
- S. M. Voronin,
Selected works: Mathematics, (ed. A. A. Karatsuba), Publishing House MGTU Im. N. E. Baumana, Moscow, 2006 (Russian).
Glasnik Matematicki Home Page