Glasnik Matematicki, Vol. 55, No. 1 (2020), 29-36.
MARKOFF-ROSENBERGER TRIPLES WITH FIBONACCI COMPONENTS
Szabolcs Tengely
Department of Mathematics, University of Debrecen, P.O.Box 12, 4010 Debrecen, Hungary
and
Department of Mathematics and Informatics,
J. Selye University,
Hradna ul. 21, 94501 Komarno,
Slovakia
e-mail: tengely@science.unideb.hu
Abstract.
We characterize the solutions of the Markoff-Rosenberger equation
a x2 + b y2 + c z2 = d x y z
with a,b,c,d ∈ ℤ, gcd(a,b)=gcd(a,c)=gcd(b,c)=1 and a,b,c | d, for which (x,y,z)=(Fi,Fj,Fk), where Fn denotes the n-th Fibonacci number for any integer n≥ 0.
2010 Mathematics Subject Classification. 11D45, 11B39
Key words and phrases. Fibonacci numbers, Markoff equation
Full text (PDF) (free access)
https://doi.org/10.3336/gm.55.1.03
References:
-
C. Baer and G. Rosenberger, The equation ax2+by2+cz2=dxyz over quadratic imaginary fields, Results Math. 33 (1998), 30-39.
MathSciNet
CrossRef
-
W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), 235-265.
MathSciNet
CrossRef
-
E. González-Jiménez, Markoff-Rosenberger triples in geometric progression, Acta Math. Hungar. 142 (2014), 231-243.
MathSciNet
CrossRef
-
E. González-Jiménez and J. M. Tornero, Markoff-Rosenberger triples in arithmetic progression, J. Symbolic Comput., 53 (2013), 53-63.
MathSciNet
CrossRef
-
F. Luca and A. Srinivasan, Markov equation with Fibonacci components,
Fibonacci Quart. 56 (2018), 126-129.
MathSciNet
-
A. Markoff, Sur les formes quadratiques binaires indéfinies,
Math. Ann. 17 (1880), 379-399.
MathSciNet
CrossRef
-
G. Rosenberger, Über die diophantische Gleichung ax2+by2+cz2=dxyz, J. Reine Angew. Math. 305 (1979), 122-125.
MathSciNet
CrossRef
-
J. H. Silverman, The Markoff equation X2+Y2+Z2=aXYZ over quadratic imaginary fields, J. Number Theory 35 (1990), 72-104.
MathSciNet
CrossRef
-
W. A. Stein et al., Sage Mathematics Software, version 8.5,
The Sage Development Team, 2019. http://www.sagemath.org.
Glasnik Matematicki Home Page