Glasnik Matematicki, Vol. 55, No. 1 (2020), 1-12.
ON Y-COORDINATES OF PELL EQUATIONS WHICH ARE BASE 2 REP-DIGITS
Bernadette Faye-Fall and Florian Luca
UFR SAT, Université Gaston Berger , Saint-Louis 32002, Sénégal
e-mail: bernadette.fayee@gmail.com
School of Mathematics, University of the Witwatersrand, Private Bag X3, Wits 2050, Johannesburg, South Africa,
and
Research Group in Algebraic Structures and Applications, King Abdulaziz University, Jeddah,
Saudi Arabia,
and
Centro de Ciencias Matemáticas, UNAM,
Morelia,
Mexico
e-mail: florian.luca@wits.ac.za
Abstract.
In this paper, we show that if (Xk,Yk) is the kth solution of the Pell equation X2-dY2=1 for some non-square integer d>1, then the equation Yk=2n-1 has at most two positive integer solutions (k,n).
2010 Mathematics Subject Classification. 11B39, 11D61
Key words and phrases. Pell equations, exponential Diophantine equations, applications of linear forms in logarithms
Full text (PDF) (free access)
https://doi.org/10.3336/gm.55.1.01
References:
- A. Baker and H. Davenport, The equations 3x2 - 2= y2 and 8x2 - 7= z2,
Q. J. Math. 20 (1969), 129-137.
MathSciNet
CrossRef
- M. A. Bennett, On the number of solutions of simultaneous Pell equations, J. Reine Angew. Math. 498 (1998), 173-199.
MathSciNet
CrossRef
- J. H. E. Cohn, The Diophantine equation x4-Dy2=1, II, Acta Arith. 78 (1997), 401-403.
MathSciNet
CrossRef
- A. Dossavi-Yovo, F. Luca and A. Togbé, On the x-coordinates of Pell equations which are rep-digits, Publ. Math. Debrecen 88 (2016), 381-399.
MathSciNet
CrossRef
- H. S. Erazo, C. A. Gómez and F. Luca, On Pillai's problem with X-coordinates of Pell equations and powers of 2, J. Number Theory 203 (2019), 294-309.
MathSciNet
CrossRef
- B. Faye and F. Luca, On the X-coordinates of Pell equations which are rep-digits, Fibonacci Quart. 56 (2018), 52-62.
MathSciNet
- S. Laisharam, F. Luca and M. Sias, On the Diophantine equation n!2± 1=dv2, preprint, 2018.
- W. Ljunggren, Einige Eigenshaften der Einheiten reeller quadratischer und rein-biquadratischer Zahl Körper
auf die Lösung einer Klasse unbestimmer Gleichungen 4. Grades,
Skr. Norske Vid.-Akad. Oslo I Mat.-Naturv. Klasse 12 (1936), 73 pp.
- F. Luca, A. Montejano, L. Szalay and A. Togbé, On the X-coordinates of Pell equations which are Tribonacci numbers, Acta Arith. 179 (2017), 25-35.
MathSciNet
CrossRef
- F. Luca and A. Togbé, On the x-coordinates of Pell equations which are Fibonacci numbers, Math. Scand. 122 (2018), 18-30.
MathSciNet
CrossRef
- D.W. Masser and J.H. Rickert, Simultaneous Pell equations, J. Number Theory 61 (1996), 52-66.
MathSciNet
CrossRef
- E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers, II, Izv. Math. 64 (2000),
1217-1269.
MathSciNet
CrossRef
Glasnik Matematicki Home Page