Glasnik Matematicki, Vol. 54, No. 2 (2019), 477-499.
BICOVARIANT DIFFERENTIAL CALCULI FOR FINITE GLOBAL QUOTIENTS
David N. Pham
Department of Mathematics & Computer Science, Queensborough C. College, City University of New York, Bayside, NY 11364, USA
e-mail: dpham90@gmail.com
Abstract.
Let (M,G) be a finite global quotient, that is, a finite set M with an action by a finite group G. In this note, we classify all bicovariant first order differential calculi (FODCs) over the weak Hopf algebra 𝕜 (G ⋉ M) ≃ 𝕜 [G ⋉ M]*, where G ⋉ M is the action groupoid associated to (M,G), and 𝕜[G ⋉ M] is the groupoid algebra of G ⋉ M. Specifically, we prove a necessary and sufficient condition for a FODC over 𝕜(G ⋉ M) to be bicovariant and then show that the isomorphism classes of bicovariant FODCs over 𝕜(G ⋉ M) are in one-to-one correspondence with subsets of a certain quotient space.
2010 Mathematics Subject Classification. 58B32, 16T05, 18B40
Key words and phrases. Global quotients, noncommutative differential geometry, first order differential calculi, weak Hopf algebras
Full text (PDF) (free access)
https://doi.org/10.3336/gm.54.2.10
References:
- L. Abrams,
Two dimensional topological quantum field theories and Frobenius algebras,
J. Knot Theory Ramifications 5 (1996), 569-587.
MathSciNet
CrossRef
- E. Batista,
Noncommutative geometry: a quantum group approach,
Mat. Contemp. 28 (2005), 63-90.
MathSciNet
- G. Böhm, F. Nill and K. Szlachányi,
Weak Hopf algebras. I. Integral theory and C*-structure,
J. Algebra 221 (1999), 385-438.
MathSciNet
CrossRef
- T. Brzeziński and S. Majid
Quantum group gauge theory on quantum spaces,
Comm. Math. Phys. 157 (1993), 591-638.
MathSciNet
CrossRef
- K. Bresser, F. Müller-Hoissen, A. Dimakis and A. Sitarz,
Non-commutative geometry of finite groups,
J. Physics A 29 (1996), 2705-2735.
MathSciNet
CrossRef
- J. Chen and S. Wang,
Differential calculi on quantum groupoids,
Comm. Algebra 36 (2008), 3792-3819.
MathSciNet
CrossRef
- A. Connes,
Noncommutative differential geometry,
Inst. Hautes Études Sci. Publ. Math. 62 (1985), 275-360.
MathSciNet
CrossRef
- A. Connes,
Noncommutative geometry,
Academic Press, Inc., San Diego, 1994.
MathSciNet
- A. Dimakis and F. Müller-Hoissen,
Discrete differential calculus, graphs, topologies and gauge theory,
J. Math. Physics 35 (1994), 6703-6735.
MathSciNet
CrossRef
- B. Fantechi and L. Goettsche,
Orbifold cohomology for global quotients,
Duke Math. J. 117 (2003), 197-227.
MathSciNet
CrossRef
- X. Gomez and S. Majid,
Noncommutative cohomology and electromagnetism on ℂq[SL2] at roots of unity,
Lett. Math. Phys. 60 (2002), 221-237.
MathSciNet
CrossRef
- T. Jarvis, R. Kaufmann and T. Kimura,
Stringy K-theory and the Chern character,
Invent. Math. 168 (2007), 23-81.
MathSciNet
CrossRef
- R. Kaufmann,
Orbifolding Frobenius algebras,
Internat. J. Math. 14 (2003), 573-619.
MathSciNet
CrossRef
- R. Kaufmann,
Global stringy orbifold cohomology, K-theory and de Rham theory,
Lett. Math. Phys. 94 (2010), 165-195.
MathSciNet
CrossRef
- G. Landi,
An introduction to noncommutative spaces and their geometries, Springer, 1997.
MathSciNet
- J. Madore,
An introduction to noncommutative differential geometry and its physical applications, 2nd. Ed.
Cambridge University Press, Cambridge, 1999.
MathSciNet
CrossRef
- S. Majid
Non-commutative differential geometry,
in: Analysis and mathematical physics, World Sci. Publ., Hackensack, 2017, 139-176.
MathSciNet
- S. Majid,
Riemannian geometry of quantum groups and finite groups with nonuniversal differentials, Comm. Math. Phys. 225 (2002), 131-170.
MathSciNet
CrossRef
- J. Nestruev,
Smooth manifolds and observables, Springer-Verlag, New York, 2003.
MathSciNet
- S. B. Sontz, Principal bundles. The quantum case, Springer, 2015.
MathSciNet
CrossRef
- M. Sweedler,
Hopf algebras, W. A. Benjamin, Inc., New York, 1969.
MathSciNet
- V. Turaev,
Homotopy field theory in dimension 2 and group-algebras, arXiv.org:math/9910010,
(1999).
- S. L. Woronowicz,
Differential calculus on compact matrix pseudogroups (quantum groups),
Comm. Math. Phys. 122 (1989), 125-170.
MathSciNet
CrossRef
- H. Zhu, S. Wang and J. Chen
Bicovariant differential calculi on a weak Hopf algebra,
Taiwanese J. Math. 18 (2014), 1679-1712.
MathSciNet
CrossRef
Glasnik Matematicki Home Page