Glasnik Matematicki, Vol. 54, No. 2 (2019), 421-462.
THETA LIFTS OF GENERIC REPRESENTATIONS: THE CASE OF ODD ORTHOGONAL GROUPS
Petar Bakić
Department of Mathematics, University of Zagreb, 10 000 Zagreb, Croatia
e-mail: pbakic@math.hr
Abstract.
We determine the occurrence and explicitly describe the theta lifts on all levels of all the irreducible generic representations of the odd orthogonal group defined over a local nonarchimedean field of characteristic zero.
2010 Mathematics Subject Classification. 22E50, 11F27
Key words and phrases. Representation theory of p-adic groups, theta correspondence, generic representations
Full text (PDF) (free access)
https://doi.org/10.3336/gm.54.2.08
References:
-
H. Atobe, On the Uniqueness of Generic Representations in an L-Packet,
Int. Math. Res. Not. IMRN 2017, 7051-7068.
MathSciNet
CrossRef
-
H. Atobe and W. T. Gan, Local theta correspondence of tempered
representations and Langlands parameters, Invent. Math.
210 (2017), 341-415.
MathSciNet
CrossRef
-
P. Bakić, Theta lifts of generic representations for dual pairs
(Sp2n, O(V)), arXiv:1811.04293, preprint.
-
P. Bakić and M. Hanzer, Generic representations of metaplectic groups
and their theta lifts, arXiv:1902.07357, preprint.
-
D. Ban and C. Jantzen, The Langlands classification for non-connected
p-adic groups, Israel J. Math. 126 (2001), 239-261.
MathSciNet
CrossRef
-
D. Ban and C. Jantzen, The Langlands quotient theorem for finite central
extensions of p-adic groups, Glas. Mat. Ser. III 48(68)
(2013), 313-334.
MathSciNet
CrossRef
-
W. T. Gan and G. Savin, Representations of metaplectic groups I: epsilon
dichotomy and local Langlands correspondence, Compos. Math.
148 (2012), 1655-1694.
MathSciNet
CrossRef
-
W. T. Gan and S. Takeda, A proof of the Howe duality conjecture, J.
Amer. Math. Soc. 29 (2016), 473-493.
MathSciNet
CrossRef
-
S. S. Gelbart, Weil's representation and the spectrum of the metaplectic group, Springer-Verlag, Berlin, 1976.
MathSciNet
-
D. Goldberg, Reducibility of induced representations for Sp(2n) and
SO(n), Amer. J. Math. 116 (1994), 1101-1151.
MathSciNet
CrossRef
-
M. Hanzer, R-groups for metaplectic groups, Israel J. Math. 231 (2019), 467-488.
MathSciNet
CrossRef
-
M. Hanzer, The generalized injectivity conjecture for classical p-adic groups, Int. Math. Res. Not. IMRN 2010, 195-237.
MathSciNet
CrossRef
-
M. Hanzer and G. Muić, Parabolic induction and Jacquet functors for
metaplectic groups, J. Algebra 323 (2010), 241-260.
MathSciNet
CrossRef
-
R. Howe, θ-series and invariant theory, in: Automorphic forms,
representations and L-functions, American
Mathematical Society, 1979, 275-285.
MathSciNet
-
R. Howe, Transcending classical invariant theory, J. Amer. Math. Soc. 2 (1989), 535-552.
MathSciNet
CrossRef
-
S. Kudla, On the local theta-correspondence, Invent. Math.
83 (1986), 229-255.
MathSciNet
CrossRef
-
S. Kudla, Notes on the local theta correspondence, unpublished note,
available online, 1996.
-
S. S. Kudla and S. Rallis, On first occurrence in the local theta
correspondence, in: Automorphic representations, L-functions and
applications: progress and prospects, de Gruyter, Berlin, 2005, 273-308.
MathSciNet
CrossRef
-
S. S. Kudla and S. Rallis, On first occurrence in the local theta
correspondence, in: Automorphic Representations,
L-functions and Applications: progress and prospects, Citeseer, 2005.
MathSciNet
CrossRef
-
C. Mœglin, M.-F. Vignéras and J.-L. Waldspurger, Correspondances de
Howe sur un corps p-adique, Springer-Verlag, Berlin, 1987.
MathSciNet
CrossRef
-
G. Muić, A proof of Casselman-Shahidi's conjecture for quasi-split
classical groups, Canad. Math. Bull. 44 (2001), 298-312.
MathSciNet
CrossRef
-
G. Muić, Howe correspondence for discrete series representations; the
case of (Sp(n); O(V)), J. Reine Angew. Math.
567 (2004), 99-150.
MathSciNet
CrossRef
-
G. Muić, Reducibility of standard representations, Pacific J. Math. 222 (2005), 133-168.
MathSciNet
CrossRef
-
G. Muić, On the structure of theta lifts of discrete series for dual
pairs (Sp(n), O(V)), Israel J. Math. 164 (2008), 87-124.
MathSciNet
CrossRef
-
G. Muić, Theta lifts of tempered representations for dual pairs
(Sp2n, O(V)), Canad. J. Math. 60 (2008), 1306-1335.
MathSciNet
CrossRef
-
G. Muić and G. Savin, Symplectic-orthogonal theta lifts of generic
discrete series, Duke Math. J. 101 (2000), 317-333.
MathSciNet
CrossRef
-
S. Rallis, On the Howe duality conjecture, Compositio Math. 51 (1984), 333-399.
MathSciNet
CrossRef
-
R. Ranga Rao, On some explicit formulas in the theory of Weil
representation, Pacific J. Math. 157 (1993), 335-371.
MathSciNet
CrossRef
-
F. Rodier, Whittaker models for admissible representations of reductive
p-adic split groups, in: Harmonic analysis on homogeneous spaces, Amer. Math. Soc., Providence, 1973, 425-430.
MathSciNet
-
B. Sun and C.-B. Zhu, Conservation relations for local theta
correspondence, J. Amer. Math. Soc. 28
(2015), 939-983.
MathSciNet
CrossRef
-
D. Szpruch, The Langlands-Shahidi method quotient for the metaplectic
group and applications, PhD Thesis, Tel-Aviv University, 2009.
-
M. Tadić, Structure arising from induction and Jacquet modules of
representations of classical p-adic groups, Journal of Algebra 177 (1995), 1-33.
MathSciNet
CrossRef
-
M. Tadić, Reducibility and discrete series in the case of classical p-adic groups; an approach based on examples, in: Geometry and analysis of
automorphic forms of several variables, World Sci. Publ., Hackensack 2012, 254-333.
MathSciNet
CrossRef
-
J.-L. Waldspurger, Demonstration d'une conjecture de duality de Howe dans
le case p-adiques, p ≠ 2, in: Festschrift in honor of I.
Piatetski-Shapiro on the occasion of his sixtieth birthday, Part I, Weizmann, Jerusalem, 1990, 267-324.
MathSciNet
-
A. V. Zelevinsky, Induced representations of reductive p-adic groups. II.
On irreducible representations of GL(n), Ann. Sci. École Norm. Sup. (4) 13 (1980), 165-210.
MathSciNet
CrossRef
Glasnik Matematicki Home Page