Glasnik Matematicki, Vol. 54, No. 2 (2019), 421-462.

THETA LIFTS OF GENERIC REPRESENTATIONS: THE CASE OF ODD ORTHOGONAL GROUPS

Petar Bakić

Department of Mathematics, University of Zagreb, 10 000 Zagreb, Croatia
e-mail: pbakic@math.hr


Abstract.   We determine the occurrence and explicitly describe the theta lifts on all levels of all the irreducible generic representations of the odd orthogonal group defined over a local nonarchimedean field of characteristic zero.

2010 Mathematics Subject Classification.   22E50, 11F27

Key words and phrases.   Representation theory of p-adic groups, theta correspondence, generic representations


Full text (PDF) (free access)

https://doi.org/10.3336/gm.54.2.08


References:

  1. H. Atobe, On the Uniqueness of Generic Representations in an L-Packet, Int. Math. Res. Not. IMRN 2017, 7051-7068.
    MathSciNet     CrossRef

  2. H. Atobe and W. T. Gan, Local theta correspondence of tempered representations and Langlands parameters, Invent. Math. 210 (2017), 341-415.
    MathSciNet     CrossRef

  3. P. Bakić, Theta lifts of generic representations for dual pairs (Sp2n, O(V)), arXiv:1811.04293, preprint.

  4. P. Bakić and M. Hanzer, Generic representations of metaplectic groups and their theta lifts, arXiv:1902.07357, preprint.

  5. D. Ban and C. Jantzen, The Langlands classification for non-connected p-adic groups, Israel J. Math. 126 (2001), 239-261.
    MathSciNet     CrossRef

  6. D. Ban and C. Jantzen, The Langlands quotient theorem for finite central extensions of p-adic groups, Glas. Mat. Ser. III 48(68) (2013), 313-334.
    MathSciNet     CrossRef

  7. W. T. Gan and G. Savin, Representations of metaplectic groups I: epsilon dichotomy and local Langlands correspondence, Compos. Math. 148 (2012), 1655-1694.
    MathSciNet     CrossRef

  8. W. T. Gan and S. Takeda, A proof of the Howe duality conjecture, J. Amer. Math. Soc. 29 (2016), 473-493.
    MathSciNet     CrossRef

  9. S. S. Gelbart, Weil's representation and the spectrum of the metaplectic group, Springer-Verlag, Berlin, 1976.
    MathSciNet    

  10. D. Goldberg, Reducibility of induced representations for Sp(2n) and SO(n), Amer. J. Math. 116 (1994), 1101-1151.
    MathSciNet     CrossRef

  11. M. Hanzer, R-groups for metaplectic groups, Israel J. Math. 231 (2019), 467-488.
    MathSciNet     CrossRef

  12. M. Hanzer, The generalized injectivity conjecture for classical p-adic groups, Int. Math. Res. Not. IMRN 2010, 195-237.
    MathSciNet     CrossRef

  13. M. Hanzer and G. Muić, Parabolic induction and Jacquet functors for metaplectic groups, J. Algebra 323 (2010), 241-260.
    MathSciNet     CrossRef

  14. R. Howe, θ-series and invariant theory, in: Automorphic forms, representations and L-functions, American Mathematical Society, 1979, 275-285.
    MathSciNet    

  15. R. Howe, Transcending classical invariant theory, J. Amer. Math. Soc. 2 (1989), 535-552.
    MathSciNet     CrossRef

  16. S. Kudla, On the local theta-correspondence, Invent. Math. 83 (1986), 229-255.
    MathSciNet     CrossRef

  17. S. Kudla, Notes on the local theta correspondence, unpublished note, available online, 1996.

  18. S. S. Kudla and S. Rallis, On first occurrence in the local theta correspondence, in: Automorphic representations, L-functions and applications: progress and prospects, de Gruyter, Berlin, 2005, 273-308.
    MathSciNet     CrossRef

  19. S. S. Kudla and S. Rallis, On first occurrence in the local theta correspondence, in: Automorphic Representations, L-functions and Applications: progress and prospects, Citeseer, 2005.
    MathSciNet     CrossRef

  20. C. Mœglin, M.-F. Vignéras and J.-L. Waldspurger, Correspondances de Howe sur un corps p-adique, Springer-Verlag, Berlin, 1987.
    MathSciNet     CrossRef

  21. G. Muić, A proof of Casselman-Shahidi's conjecture for quasi-split classical groups, Canad. Math. Bull. 44 (2001), 298-312.
    MathSciNet     CrossRef

  22. G. Muić, Howe correspondence for discrete series representations; the case of (Sp(n); O(V)), J. Reine Angew. Math. 567 (2004), 99-150.
    MathSciNet     CrossRef

  23. G. Muić, Reducibility of standard representations, Pacific J. Math. 222 (2005), 133-168.
    MathSciNet     CrossRef

  24. G. Muić, On the structure of theta lifts of discrete series for dual pairs (Sp(n), O(V)), Israel J. Math. 164 (2008), 87-124.
    MathSciNet     CrossRef

  25. G. Muić, Theta lifts of tempered representations for dual pairs (Sp2n, O(V)), Canad. J. Math. 60 (2008), 1306-1335.
    MathSciNet     CrossRef

  26. G. Muić and G. Savin, Symplectic-orthogonal theta lifts of generic discrete series, Duke Math. J. 101 (2000), 317-333.
    MathSciNet     CrossRef

  27. S. Rallis, On the Howe duality conjecture, Compositio Math. 51 (1984), 333-399.
    MathSciNet     CrossRef

  28. R. Ranga Rao, On some explicit formulas in the theory of Weil representation, Pacific J. Math. 157 (1993), 335-371.
    MathSciNet     CrossRef

  29. F. Rodier, Whittaker models for admissible representations of reductive p-adic split groups, in: Harmonic analysis on homogeneous spaces, Amer. Math. Soc., Providence, 1973, 425-430.
    MathSciNet    

  30. B. Sun and C.-B. Zhu, Conservation relations for local theta correspondence, J. Amer. Math. Soc. 28 (2015), 939-983.
    MathSciNet     CrossRef

  31. D. Szpruch, The Langlands-Shahidi method quotient for the metaplectic group and applications, PhD Thesis, Tel-Aviv University, 2009.

  32. M. Tadić, Structure arising from induction and Jacquet modules of representations of classical p-adic groups, Journal of Algebra 177 (1995), 1-33.
    MathSciNet     CrossRef

  33. M. Tadić, Reducibility and discrete series in the case of classical p-adic groups; an approach based on examples, in: Geometry and analysis of automorphic forms of several variables, World Sci. Publ., Hackensack 2012, 254-333.
    MathSciNet     CrossRef

  34. J.-L. Waldspurger, Demonstration d'une conjecture de duality de Howe dans le case p-adiques, p 2, in: Festschrift in honor of I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part I, Weizmann, Jerusalem, 1990, 267-324.
    MathSciNet    

  35. A. V. Zelevinsky, Induced representations of reductive p-adic groups. II. On irreducible representations of GL(n), Ann. Sci. École Norm. Sup. (4) 13 (1980), 165-210.
    MathSciNet     CrossRef

Glasnik Matematicki Home Page