Glasnik Matematicki, Vol. 54, No. 2 (2019), 345-367.
EQUIVALENT CROSSED PRODUCTS OF MONOIDAL HOM-HOPF ALGEBRAS
Zhongwei Wang, Liangyun Zhang and Huihui Zheng
College of Science, Jinling Institute of Technology, 211169, Nanjing, Jiangsu, P.R. China
College of Science, Nanjing
Agricultural University, 210095, Nanjing, Jiangsu, P.R. China
e-mail: zlyun@njau.edu.cn
College of Science, Nanjing
Agricultural University, 210095, Nanjing, Jiangsu, P.R. China
Abstract.
In this paper, we give a Maschke-type theorem for a Hom-crossed product on a finite dimensional monoidal Hom-Hopf
algebra, and investigate a sufficient and necessary condition for two Hom-crossed products to be equivalent. Furthermore, we construct an equivalent Hom-crossed system based on a same Hom-crossed product by using lazy Hom-2-cocyle.
2010 Mathematics Subject Classification. 16T05, 18D10, 16T25
Key words and phrases. Monoidal Hom-Hopf algebra, Hom-crossed
product, Hom-cleft extension, Maschke-type theorem, Hom-crossed system, lazy Hom-2-cocyle
Full text (PDF) (free access)
https://doi.org/10.3336/gm.54.2.05
References:
- R. Blattner and S. Montgomery, Crossed products and Galois extensions of Hopf algebra, Pacific J. Math. 137 (1989), 37-54.
MathSciNet
CrossRef
- S. Caenepeel and I. Goyvaerts, Monoidal Hom-Hopf
algebras, Comm. Algebra 39 (2011), 2216-2240.
MathSciNet
CrossRef
- Y. Y. Chen and L. Y. Zhang, Hom-Yang-Baxter equations and Frobenius monoidal Hom-algebras, Adv. Math. Phys. 2018, 2912578.
MathSciNet
CrossRef
- Y. Y. Chen and L. Y. Zhang, The structure and construction of bi-Frobenius Hom-algebras, Comm. Algebra 45 (2017), 2142-2162.
MathSciNet
CrossRef
- Y. Y. Chen, Z. W. Wang and L. Y. Zhang, The fundamental theorem and Maschke's theorem in the category of relative Hom-Hopf modules,
Colloq. Math. 144 (2016), 55-71.
MathSciNet
- Y. Y. Chen, Z. W. Wang and L. Y. Zhang,
Integrals for monoidal Hom-Hopf algebras and their applications,
J. Math. Phys. 54 (2013), 073515.
MathSciNet
CrossRef
- Y. Y. Chen and L. Y. Zhang,
Hopf-Galois extensions for monoidal Hom-Hopf algebras, Colloq. Math. 143 (2016), 127-147.
MathSciNet
- Y. Doi, Equivalent crossed products for a Hopf algebra, Comm. Algebra 17 (1989), 3053-3085.
MathSciNet
CrossRef
- A. Gohr, On Hom-algebras with surjective
twisting, J. Algebra 324 (2010), 1483-1491.
MathSciNet
CrossRef
- J. T. Hartwig, D. Larsson and S. D. Silvestrov,
Deformations of Lie algebras using σ-derivations, J.
Algebra 295 (2006), 314-361.
MathSciNet
CrossRef
- D. Larsson and S. D.
Silvestrov, Quasi-deformations of sl2(F) using twisted
derivations, Comm. Algebra 35 (2007), 4303-4318.
MathSciNet
CrossRef
- D. W. Lu and S. H. Wang, Crossed product and Galois extension of monoidal Hom-Hopf algebras, arXiv:1405.7528.
- A. Makhlouf and S. D. Silvestrov, Hom-algebras
structures, J. Gen. Lie Theory Appl. 2 (2008), 51-64.
MathSciNet
CrossRef
- A. Makhlouf and S. Silvestrov, Hom-algebras and
Hom-coalgebras, J. Algebra Appl. 9 (2010), 553-589.
MathSciNet
CrossRef
- Z. W. Wang, Y. Y. Chen and L. Y. Zhang, Separable extensions for crossed products over monoidal Hom-Hopf algebras, J. Algebra Appl. 17 (2018), 1850161.
MathSciNet
CrossRef
- Z. W. Wang, Y. Y. Chen and L. Y. Zhang, The antipode and Drinfel'd double of a
Hom-Hopf algebra, Sci. China Math. 42 (2012), 1079-1093.
- D. Yau, Hom-algebras and homology, J. Lie Theory 19 (2009), 409-421.
MathSciNet
- D. Yau, The Hom-Yang-Baxter equation, Hom-Lie
algebras, and quasi-triangular bialgebras, J. Phys. A 42 (2009), 165202.
MathSciNet
CrossRef
- D. Yau, Hom-bialgebras and comodule Hom-algebras, Int. Electron. J. Algebra 8 (2010), 45-64.
MathSciNet
- X. F. Zhao and X. H. Zhang, Lazy 2-cocycles over monoidal Hom-Hopf algebras, Colloq. Math. 142 (2016), 61-81.
MathSciNet
CrossRef
Glasnik Matematicki Home Page