Glasnik Matematicki, Vol. 54, No. 2 (2019), 345-367.

EQUIVALENT CROSSED PRODUCTS OF MONOIDAL HOM-HOPF ALGEBRAS

Zhongwei Wang, Liangyun Zhang and Huihui Zheng

College of Science, Jinling Institute of Technology, 211169, Nanjing, Jiangsu, P.R. China

College of Science, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, P.R. China
e-mail: zlyun@njau.edu.cn

College of Science, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, P.R. China


Abstract.   In this paper, we give a Maschke-type theorem for a Hom-crossed product on a finite dimensional monoidal Hom-Hopf algebra, and investigate a sufficient and necessary condition for two Hom-crossed products to be equivalent. Furthermore, we construct an equivalent Hom-crossed system based on a same Hom-crossed product by using lazy Hom-2-cocyle.

2010 Mathematics Subject Classification.   16T05, 18D10, 16T25

Key words and phrases.   Monoidal Hom-Hopf algebra, Hom-crossed product, Hom-cleft extension, Maschke-type theorem, Hom-crossed system, lazy Hom-2-cocyle


Full text (PDF) (free access)

https://doi.org/10.3336/gm.54.2.05


References:

  1. R. Blattner and S. Montgomery, Crossed products and Galois extensions of Hopf algebra, Pacific J. Math. 137 (1989), 37-54.
    MathSciNet     CrossRef

  2. S. Caenepeel and I. Goyvaerts, Monoidal Hom-Hopf algebras, Comm. Algebra 39 (2011), 2216-2240.
    MathSciNet     CrossRef

  3. Y. Y. Chen and L. Y. Zhang, Hom-Yang-Baxter equations and Frobenius monoidal Hom-algebras, Adv. Math. Phys. 2018, 2912578.
    MathSciNet     CrossRef

  4. Y. Y. Chen and L. Y. Zhang, The structure and construction of bi-Frobenius Hom-algebras, Comm. Algebra 45 (2017), 2142-2162.
    MathSciNet     CrossRef

  5. Y. Y. Chen, Z. W. Wang and L. Y. Zhang, The fundamental theorem and Maschke's theorem in the category of relative Hom-Hopf modules, Colloq. Math. 144 (2016), 55-71.
    MathSciNet    

  6. Y. Y. Chen, Z. W. Wang and L. Y. Zhang, Integrals for monoidal Hom-Hopf algebras and their applications, J. Math. Phys. 54 (2013), 073515.
    MathSciNet     CrossRef

  7. Y. Y. Chen and L. Y. Zhang, Hopf-Galois extensions for monoidal Hom-Hopf algebras, Colloq. Math. 143 (2016), 127-147.
    MathSciNet    

  8. Y. Doi, Equivalent crossed products for a Hopf algebra, Comm. Algebra 17 (1989), 3053-3085.
    MathSciNet     CrossRef

  9. A. Gohr, On Hom-algebras with surjective twisting, J. Algebra 324 (2010), 1483-1491.
    MathSciNet     CrossRef

  10. J. T. Hartwig, D. Larsson and S. D. Silvestrov, Deformations of Lie algebras using σ-derivations, J. Algebra 295 (2006), 314-361.
    MathSciNet     CrossRef

  11. D. Larsson and S. D. Silvestrov, Quasi-deformations of sl2(F) using twisted derivations, Comm. Algebra 35 (2007), 4303-4318.
    MathSciNet     CrossRef

  12. D. W. Lu and S. H. Wang, Crossed product and Galois extension of monoidal Hom-Hopf algebras, arXiv:1405.7528.

  13. A. Makhlouf and S. D. Silvestrov, Hom-algebras structures, J. Gen. Lie Theory Appl. 2 (2008), 51-64.
    MathSciNet     CrossRef

  14. A. Makhlouf and S. Silvestrov, Hom-algebras and Hom-coalgebras, J. Algebra Appl. 9 (2010), 553-589.
    MathSciNet     CrossRef

  15. Z. W. Wang, Y. Y. Chen and L. Y. Zhang, Separable extensions for crossed products over monoidal Hom-Hopf algebras, J. Algebra Appl. 17 (2018), 1850161.
    MathSciNet     CrossRef

  16. Z. W. Wang, Y. Y. Chen and L. Y. Zhang, The antipode and Drinfel'd double of a Hom-Hopf algebra, Sci. China Math. 42 (2012), 1079-1093.

  17. D. Yau, Hom-algebras and homology, J. Lie Theory 19 (2009), 409-421.
    MathSciNet    

  18. D. Yau, The Hom-Yang-Baxter equation, Hom-Lie algebras, and quasi-triangular bialgebras, J. Phys. A 42 (2009), 165202.
    MathSciNet     CrossRef

  19. D. Yau, Hom-bialgebras and comodule Hom-algebras, Int. Electron. J. Algebra 8 (2010), 45-64.
    MathSciNet    

  20. X. F. Zhao and X. H. Zhang, Lazy 2-cocycles over monoidal Hom-Hopf algebras, Colloq. Math. 142 (2016), 61-81.
    MathSciNet     CrossRef

Glasnik Matematicki Home Page