Glasnik Matematicki, Vol. 54, No. 2 (2019), 321-343.

GENERATORS AND INTEGRAL POINTS ON CERTAIN QUARTIC CURVES

Yasutsugu Fujita and Tadahisa Nara

College of Industrial Technology, Nihon University, 2-11-1 Shin-ei, Narashino, Chiba 275-8576, Japan
e-mail: fujita.yasutsugu@nihon-u.ac.jp

Faculty of Engineering, Tohoku-Gakuin University, 1-13-1 Chuo, Tagajo, Miyagi 985-8537, Japan
e-mail: sa4m19@math.tohoku.ac.jp


Abstract.   In this paper, we study integral points and generators on quartic curves of the forms u2 ± v4=m for a nonzero integer m. The main results assert that certain integral points on the curves can be extended to bases for the Mordell-Weil groups of the elliptic curves attached to the quartic curves in the cases where the Mordell-Weil ranks are at most two. As corollaries, we explicitly describe the integral points on the quartic curves in each case where the ranks are one and two.

2010 Mathematics Subject Classification.   11G05, 11D25, 11G50

Key words and phrases.   Elliptic curve, quartic curve, canonical height, integral points


Full text (PDF) (free access)

https://doi.org/10.3336/gm.54.2.04


References:

  1. J. W. S. Cassels, Lectures on elliptic curves, Cambridge University Press, Cambridge, 1991.
    MathSciNet     CrossRef

  2. I. Connell, Elliptic curve handbook, available online at http://webs.ucm.es/BUCM/mat/doc8354.pdf.

  3. Y. Fujita and T. Nara, Generators and integral points on twists of the Fermat cubic, Acta Arith. 168 (2015), 1-16.
    MathSciNet     CrossRef

  4. Y. Fujita and N. Terai, On the rank of the elliptic curve y2=x3-nx, Int. J. Algebra 6 (2012), 885-901.
    MathSciNet    

  5. Y. Fujita and N. Terai, Generators and integer points on the elliptic curve y2=x3-nx, Acta Arith. 160 (2013), 333-348.
    MathSciNet     CrossRef

  6. A. Knapp, Elliptic Curves, Princeton University Press, Princeton, NJ, 1992.
    MathSciNet    

  7. B. Newman, Growth of torsion of elliptic curves with odd-order torsion over quadratic cyclotomic fields, preprint, https://arxiv.org/abs/1604.01153.

  8. Sage, Open Source Mathematics Software, http://www.sagemath.org/.

  9. S. Siksek, Infinite descent on elliptic curves, Rocky Mountain J. Math. 25 (1995), 1501-1538. CrossRef
    MathSciNet    

  10. J. H. Silverman and J. Tate, Rational points on elliptic curves, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1992.
    MathSciNet     CrossRef

  11. P. Voutier and M. Yabuta, Lang's conjecture and sharp height estimates for the elliptic curves y2=x3+ax, Int. J. Number Theory 9 (2013), 1141-1170.
    MathSciNet     CrossRef

Glasnik Matematicki Home Page