Glasnik Matematicki, Vol. 54, No. 2 (2019), 279-319.
ON THE EXISTENCE OF S-DIOPHANTINE QUADRUPLES
Volker Ziegler
Institute of Mathematics, University of Salzburg, Hellbrunnerstrasse 34/I, A-5020 Salzburg, Austria
e-mail: volker.ziegler@sbg.ac.at
Abstract.
Let S be a set of primes. We call an m-tuple (a1,… ,am) of distinct, positive integers S-Diophantine, if for all i≠ j the integers si,j:=aiaj+1
have only prime divisors coming from the set S, i.e. if all si,j are S-units. In this paper, we show that no S-Diophantine quadruple (i.e. m=4) exists if
S={3,q}. Furthermore we show that for all pairs of primes (p,q) with p < q and p ≡ 3 mod 4 no {p,q}-Diophantine quadruples exist, provided
that (p,q) is not a Wieferich prime pair.
2010 Mathematics Subject Classification. 11D61, 11D45
Key words and phrases. Diophantine equations, S-unit equations, Diophantine tuples, S-Diophantine quadruples
Full text (PDF) (free access)
https://doi.org/10.3336/gm.54.2.03
References:
-
A. Baker and H. Davenport, The equations 3x2 - 2 = y2 and
8x2 - 7 = z2, Quart. J. Math. Oxford Ser. (2) 20
(1969), 129-137.
MathSciNet
CrossRef
-
Y. Bugeaud and A. Dujella, On a problem of Diophantus for higher powers, Math. Proc. Cambridge Philos. Soc. 135 (2003), 1-10.
MathSciNet
CrossRef
-
Y. Bugeaud and M. Laurent, Minoration effective de la distance p-adique entre puissances de
nombres algébriques, J. Number Theory 61 (1996), 311-342.
MathSciNet
CrossRef
-
H. Cohen, Number theory. Vol. I. Tools and Diophantine equations,
Graduate Texts in Mathematics 239, Springer, New York, 2007.
MathSciNet
-
P. Corvaja and U. Zannier, On the greatest prime factor of (ab+1)(ac+1), Proc. Amer. Math. Soc. 131 (2003), 1705-1709.
MathSciNet
CrossRef
-
A. Dujella, Diophantine m-tuples, available at http://web.math.hr/~duje/dtuples.html.
-
A. Dujella, There are only finitely many
Diophantine quintuples, J. Reine Angew. Math. 566 (2004), 183-214.
MathSciNet
CrossRef
-
A. Dujella and A. Pethö, A generalization of a theorem of
Baker and Davenport, Quart. J. Math. Oxford Ser. (2) 49
(1998), 291-306.
MathSciNet
CrossRef
-
K. Györy, A. Sárközy and C. L. Stewart, On the number of prime factors of integers of the form ab+1, Acta Arith. 74 (1996), 365-385.
MathSciNet
CrossRef
-
B. He, A. Togbé and V. Ziegler, There is no Diophantine quintuple,
Trans. Amer. Math. Soc. 371 (2019), 6665-6709.
MathSciNet
CrossRef
-
S. Hernández and F. Luca,On the largest prime factor of (ab+1)(ac+1)(bc+1), Bol. Soc. Mat. Mexicana (3) 9 (2003), 235-244.
MathSciNet
-
C. Heuberger, A. Togbé, and V. Ziegler, Automatic solution of families of Thue equations and an example of degree 8,
J. Symbolic Comput. 38 (2004), 1145-1163.
MathSciNet
CrossRef
-
M. Laurent,
Linear forms in two logarithms and interpolation determinants. II, Acta Arith. 133 (2008), 325-348.
MathSciNet
CrossRef
-
F. Luca and L. Szalay, Fibonacci Diophantine triples, Glas. Mat. Ser. III 43(63) (2008), 253-264.
MathSciNet
CrossRef
-
A. Pethö and B. M. M. de Weger, Products of prime powers in binary recurrence sequences. I. The
hyperbolic case, with an application to the generalized Ramanujan-Nagell
equation, Math. Comp. 47 (1986), 713-727.
MathSciNet
CrossRef
-
C. L. Stewart and R. Tijdeman, On the greatest prime factor of (ab+1)(ac+1)(bc+1), Acta Arith. 79 (1997), 93-101.
MathSciNet
CrossRef
-
L. Szalay and V. Ziegler, On an S-unit variant of Diophantine m-tuples, Publ. Math. Debrecen, 83 (2013), 97-121.
MathSciNet
CrossRef
-
L. Szalay and V. Ziegler, S-Diophantine quadruples with two primes congruent to 3 modulo
4, Integers 13 (2013), Paper No. A80.
MathSciNet
-
L. Szalay and V. Ziegler, S-Diophantine quadruples with S={2,q}, Int. J. Number Theory, 11 (2105), 849-868.
MathSciNet
CrossRef
-
The PARI Group, Univ. Bordeaux, PARI/GP version 2.9.5, 2018, available from http://pari.math.u-bordeaux.fr/.
-
T. Yamada A note on the paper by Bugeaud and Laurent ``Minoration
effective de la distance p-adique entre puissances de nombres
algébriques'' [mr1423057] J. Number Theory, 130 (2010), 1889-1897.
MathSciNet
CrossRef
Glasnik Matematicki Home Page