Glasnik Matematicki, Vol. 54, No. 2 (2019), 279-319.

ON THE EXISTENCE OF S-DIOPHANTINE QUADRUPLES

Volker Ziegler

Institute of Mathematics, University of Salzburg, Hellbrunnerstrasse 34/I, A-5020 Salzburg, Austria
e-mail: volker.ziegler@sbg.ac.at


Abstract.   Let S be a set of primes. We call an m-tuple (a1,… ,am) of distinct, positive integers S-Diophantine, if for all i≠ j the integers si,j:=aiaj+1 have only prime divisors coming from the set S, i.e. if all si,j are S-units. In this paper, we show that no S-Diophantine quadruple (i.e. m=4) exists if S={3,q}. Furthermore we show that for all pairs of primes (p,q) with p < q and p ≡ 3 mod 4 no {p,q}-Diophantine quadruples exist, provided that (p,q) is not a Wieferich prime pair.

2010 Mathematics Subject Classification.   11D61, 11D45

Key words and phrases.   Diophantine equations, S-unit equations, Diophantine tuples, S-Diophantine quadruples


Full text (PDF) (free access)

https://doi.org/10.3336/gm.54.2.03


References:

  1. A. Baker and H. Davenport, The equations 3x2 - 2 = y2 and 8x2 - 7 = z2, Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137.
    MathSciNet     CrossRef

  2. Y. Bugeaud and A. Dujella, On a problem of Diophantus for higher powers, Math. Proc. Cambridge Philos. Soc. 135 (2003), 1-10.
    MathSciNet     CrossRef

  3. Y. Bugeaud and M. Laurent, Minoration effective de la distance p-adique entre puissances de nombres algébriques, J. Number Theory 61 (1996), 311-342.
    MathSciNet     CrossRef

  4. H. Cohen, Number theory. Vol. I. Tools and Diophantine equations, Graduate Texts in Mathematics 239, Springer, New York, 2007.
    MathSciNet    

  5. P. Corvaja and U. Zannier, On the greatest prime factor of (ab+1)(ac+1), Proc. Amer. Math. Soc. 131 (2003), 1705-1709.
    MathSciNet     CrossRef

  6. A. Dujella, Diophantine m-tuples, available at http://web.math.hr/~duje/dtuples.html.

  7. A. Dujella, There are only finitely many Diophantine quintuples, J. Reine Angew. Math. 566 (2004), 183-214.
    MathSciNet     CrossRef

  8. A. Dujella and A. Pethö, A generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser. (2) 49 (1998), 291-306.
    MathSciNet     CrossRef

  9. K. Györy, A. Sárközy and C. L. Stewart, On the number of prime factors of integers of the form ab+1, Acta Arith. 74 (1996), 365-385.
    MathSciNet     CrossRef

  10. B. He, A. Togbé and V. Ziegler, There is no Diophantine quintuple, Trans. Amer. Math. Soc. 371 (2019), 6665-6709.
    MathSciNet     CrossRef

  11. S. Hernández and F. Luca,On the largest prime factor of (ab+1)(ac+1)(bc+1), Bol. Soc. Mat. Mexicana (3) 9 (2003), 235-244.
    MathSciNet    

  12. C. Heuberger, A. Togbé, and V. Ziegler, Automatic solution of families of Thue equations and an example of degree 8, J. Symbolic Comput. 38 (2004), 1145-1163.
    MathSciNet     CrossRef

  13. M. Laurent, Linear forms in two logarithms and interpolation determinants. II, Acta Arith. 133 (2008), 325-348.
    MathSciNet     CrossRef

  14. F. Luca and L. Szalay, Fibonacci Diophantine triples, Glas. Mat. Ser. III 43(63) (2008), 253-264.
    MathSciNet     CrossRef

  15. A. Pethö and B. M. M. de Weger, Products of prime powers in binary recurrence sequences. I. The hyperbolic case, with an application to the generalized Ramanujan-Nagell equation, Math. Comp. 47 (1986), 713-727.
    MathSciNet     CrossRef

  16. C. L. Stewart and R. Tijdeman, On the greatest prime factor of (ab+1)(ac+1)(bc+1), Acta Arith. 79 (1997), 93-101.
    MathSciNet     CrossRef

  17. L. Szalay and V. Ziegler, On an S-unit variant of Diophantine m-tuples, Publ. Math. Debrecen, 83 (2013), 97-121.
    MathSciNet     CrossRef

  18. L. Szalay and V. Ziegler, S-Diophantine quadruples with two primes congruent to 3 modulo 4, Integers 13 (2013), Paper No. A80.
    MathSciNet    

  19. L. Szalay and V. Ziegler, S-Diophantine quadruples with S={2,q}, Int. J. Number Theory, 11 (2105), 849-868.
    MathSciNet     CrossRef

  20. The PARI Group, Univ. Bordeaux, PARI/GP version 2.9.5, 2018, available from http://pari.math.u-bordeaux.fr/.

  21. T. Yamada A note on the paper by Bugeaud and Laurent ``Minoration effective de la distance p-adique entre puissances de nombres algébriques'' [mr1423057] J. Number Theory, 130 (2010), 1889-1897.
    MathSciNet     CrossRef

Glasnik Matematicki Home Page