Glasnik Matematicki, Vol. 54, No. 2 (2019), 255-270.
DIOPHANTINE EQUATIONS WITH BALANCING-LIKE SEQUENCES ASSOCIATED TO BROCARD-RAMANUJAN-TYPE PROBLEM
Manasi Kumari Sahukar and Gopal Krishna Panda
Department of Mathematics, National Institute of Technology Rourkela, Odisha, India
e-mail: manasi.sahukar@gmail.com
e-mail: gkpanda_nit@rediffmail.com
Abstract.
In this paper, we deal with the Brocard-Ramanujan-type equations An1An2 ⋯ Ank± 1=Am or Gm or Gm2 where {An}n≥0 and {Gm}m≥0 are either balancing-like sequences or associated balancing-like sequences.
2010 Mathematics Subject Classification. 11D45, 11B39
Key words and phrases. Brocard-Ramanujan equation, Balancing-like and associated balancing-like sequence, Pell-like and associated Pell-like sequence
Full text (PDF) (free access)
https://doi.org/10.3336/gm.54.2.01
References:
- A. Behera and G. K. Panda,On the square roots of triangular numbers, Fibonacci Quart. 37 (1999), 98-105.
MathSciNet
- D. Berend and J. E. Harmse, On polynomial-factorial Diophantine equations, Trans. Amer. Math. Soc. 358 (2005), 1741-1779.
MathSciNet
CrossRef
- B. C. Berndt and W. F. Galway, On the Brocard-Ramanujan Diophantine equation n! + 1 = m2, Ramanujan J. 4 (2006), 41-42.
MathSciNet
CrossRef
- Y. Bilu, G. Hanrot and P. M. Voutier, Existence of primitive divisors of
Lucas and Lehmer numbers, J. Reine Angew. Math. 539 (2001), 75-122.
MathSciNet
CrossRef
- H. Brocard, Question 166, Nouv. Corresp. Math. 2 (1876), 287.
- H. Brocard, Question 1532, Nouv. Ann. Math. 4 (1885), 391.
- R. D. Carmichael, On the numerical factors of arithmetic forms αn ± βn, Ann. of Math. (2) 15 (1913), 30-70.
MathSciNet
CrossRef
MathSciNet
CrossRef
- A. Dabrowski, On the diophantine equation n! +A=y2, Nieuw Arch. Wiskd. 14 (1996), 321-324.
MathSciNet
- A. Dabrowski and M. Ulas, Variations on the Brocard-Ramanujan equation, J. Number Theory 133 (2013) 1168-1185.
MathSciNet
CrossRef
- R. Keskin and Z. Siar, Positive integer solutions of some Diophantine equations in terms of integer sequences, Afr. Mat.
30 (2019), 181-194.
MathSciNet
CrossRef
- M. A. Khan and H. Kwong, Some binomial identities associated with the generalized natural number sequence, Fibonacci Quart. 49 (2011), 57-65.
MathSciNet
- D. H. Lehmer, An extended theory of Lucas' functions, Ann. of Math. 31 (1930), 419-448.
MathSciNet
CrossRef
- F. Luca and T. N. Shorey, Diophantine equations with products of consecutive terms in Lucas sequences II, Acta Arith. 114 (2008), 298-311.
MathSciNet
CrossRef
- D. Marques, The Fibonacci version of the Brocard-Ramanujan Diophantine equation, Port. Math. 68 (2011), 185-189.
MathSciNet
CrossRef
- R. D. Matson, Brocard's problem 4th solution search utilizing quadratic residues (2017), http://unsolvedproblems.org/S99.pdf,
- W. L. McDaniel, The g.c.d in Lucas sequences and Lehmer sequences, Fibonacci Quart. 29 (1991), 24-29.
MathSciNet
- M. Overholt, The Diophantine equation n!+1=m2, Bull. Lond. Math. Soc. 25 (1993), 104.
MathSciNet
CrossRef
- G. K. Panda, Some fascinating properties of balancing numbers, In Proc. of Eleventh Internat. Conference on Fibonacci Numbers and Their Applications, Cong. Numer. 194 (2009), 185-189.
MathSciNet
- G. K. Panda and S. S. Rout, A class of recurrent sequences exhibiting some exciting properties of balancing numbers, Int. J. Math. Comput. Sci. 6 (2012).
- G. K. Panda and S. S. Pradhan, Associate sequences of balancing-like sequence, Math. Rep. (Bucur.), to appear.
- I. Pink and M. Szikszai, A Brocard-Ramanujan-type equation with Lucas and associated Lucas sequences, Glas. Mat. Ser. III 52(72) (2017), 11-21.
MathSciNet
CrossRef
- P. Pongsriiam, Factorization of Fibonacci numbers into products of Lucas numbers and related results, JP J. Algebra Number Theory Appl. 38(4) (2016), 363-372.
- P. Pongsriiam, Fibonacci and Lucas numbers which are one away from
their products, Fibonacci Quart. 55(1) (2017), 29-40.
MathSciNet
- P. Pongsriiam, Fibonacci and Lucas Numbers Associated with Brocard-Ramanujan Equation, Commun. Korean Math. Soc. 32(3) (2017), 511-522.
MathSciNet
- S. Ramanujan, Question 469, J. Indian Math. Soc. 5 (1913), 59.
- S. Ramanujan, Collected Papers, Chelsea, New York, (1962).
- P. K. Ray, Balancing and cobalancing numbers, Ph.D. Thesis, National Institute of Technology, Rourkela, India, 2009.
- P. Ribenboim, The book of prime number records, Springer-Verlag, New York (1988).
MathSciNet
CrossRef
- S. S. Rout, Some generalizations and properties of balancing numbers, Ph.D. Thesis, National Institute of Technology, Rourkela, India, 2015.
- C. L. Stewart, Primitive divisors of Lucas and Lehmer numbers,
in: Transcendence theory: advances and applications, eds. A. Baker and D.W. Masser, Academic Press, New York, (1977), 79-92.
MathSciNet
- L. Szalay, Diophantine equations with binary recurrences associated to the Brocard-Ramanujan problem, Port. Math. 69 (2012), 213-220.
MathSciNet
CrossRef
- D. T. Walker, On the Diophantine equation mX2-nY2=± 1, Amer. Math. Monthly 74 (1967), 504-513.
MathSciNet
CrossRef
- M. Ward, The intrinsic divisors of Lehmer numbers, Ann. of Math. (2) 62 (1955), 230-236.
MathSciNet
CrossRef
Glasnik Matematicki Home Page