Glasnik Matematicki, Vol. 54, No. 2 (2019), 255-270.

DIOPHANTINE EQUATIONS WITH BALANCING-LIKE SEQUENCES ASSOCIATED TO BROCARD-RAMANUJAN-TYPE PROBLEM

Manasi Kumari Sahukar and Gopal Krishna Panda

Department of Mathematics, National Institute of Technology Rourkela, Odisha, India
e-mail: manasi.sahukar@gmail.com
e-mail: gkpanda_nit@rediffmail.com


Abstract.   In this paper, we deal with the Brocard-Ramanujan-type equations An1An2 ⋯ Ank± 1=Am or Gm or Gm2 where {An}n≥0 and {Gm}m≥0 are either balancing-like sequences or associated balancing-like sequences.

2010 Mathematics Subject Classification.   11D45, 11B39

Key words and phrases.   Brocard-Ramanujan equation, Balancing-like and associated balancing-like sequence, Pell-like and associated Pell-like sequence


Full text (PDF) (free access)

https://doi.org/10.3336/gm.54.2.01


References:

  1. A. Behera and G. K. Panda,On the square roots of triangular numbers, Fibonacci Quart. 37 (1999), 98-105.
    MathSciNet    

  2. D. Berend and J. E. Harmse, On polynomial-factorial Diophantine equations, Trans. Amer. Math. Soc. 358 (2005), 1741-1779.
    MathSciNet     CrossRef

  3. B. C. Berndt and W. F. Galway, On the Brocard-Ramanujan Diophantine equation n! + 1 = m2, Ramanujan J. 4 (2006), 41-42.
    MathSciNet     CrossRef

  4. Y. Bilu, G. Hanrot and P. M. Voutier, Existence of primitive divisors of Lucas and Lehmer numbers, J. Reine Angew. Math. 539 (2001), 75-122.
    MathSciNet     CrossRef

  5. H. Brocard, Question 166, Nouv. Corresp. Math. 2 (1876), 287.

  6. H. Brocard, Question 1532, Nouv. Ann. Math. 4 (1885), 391.

  7. R. D. Carmichael, On the numerical factors of arithmetic forms αn ± βn, Ann. of Math. (2) 15 (1913), 30-70.
    MathSciNet     CrossRef
    MathSciNet     CrossRef

  8. A. Dabrowski, On the diophantine equation n! +A=y2, Nieuw Arch. Wiskd. 14 (1996), 321-324.
    MathSciNet    

  9. A. Dabrowski and M. Ulas, Variations on the Brocard-Ramanujan equation, J. Number Theory 133 (2013) 1168-1185.
    MathSciNet     CrossRef

  10. R. Keskin and Z. Siar, Positive integer solutions of some Diophantine equations in terms of integer sequences, Afr. Mat. 30 (2019), 181-194.
    MathSciNet     CrossRef

  11. M. A. Khan and H. Kwong, Some binomial identities associated with the generalized natural number sequence, Fibonacci Quart. 49 (2011), 57-65.
    MathSciNet    

  12. D. H. Lehmer, An extended theory of Lucas' functions, Ann. of Math. 31 (1930), 419-448.
    MathSciNet     CrossRef

  13. F. Luca and T. N. Shorey, Diophantine equations with products of consecutive terms in Lucas sequences II, Acta Arith. 114 (2008), 298-311.
    MathSciNet     CrossRef

  14. D. Marques, The Fibonacci version of the Brocard-Ramanujan Diophantine equation, Port. Math. 68 (2011), 185-189.
    MathSciNet     CrossRef

  15. R. D. Matson, Brocard's problem 4th solution search utilizing quadratic residues (2017), http://unsolvedproblems.org/S99.pdf,

  16. W. L. McDaniel, The g.c.d in Lucas sequences and Lehmer sequences, Fibonacci Quart. 29 (1991), 24-29.
    MathSciNet    

  17. M. Overholt, The Diophantine equation n!+1=m2, Bull. Lond. Math. Soc. 25 (1993), 104.
    MathSciNet     CrossRef

  18. G. K. Panda, Some fascinating properties of balancing numbers, In Proc. of Eleventh Internat. Conference on Fibonacci Numbers and Their Applications, Cong. Numer. 194 (2009), 185-189.
    MathSciNet    

  19. G. K. Panda and S. S. Rout, A class of recurrent sequences exhibiting some exciting properties of balancing numbers, Int. J. Math. Comput. Sci. 6 (2012).

  20. G. K. Panda and S. S. Pradhan, Associate sequences of balancing-like sequence, Math. Rep. (Bucur.), to appear.

  21. I. Pink and M. Szikszai, A Brocard-Ramanujan-type equation with Lucas and associated Lucas sequences, Glas. Mat. Ser. III 52(72) (2017), 11-21.
    MathSciNet     CrossRef

  22. P. Pongsriiam, Factorization of Fibonacci numbers into products of Lucas numbers and related results, JP J. Algebra Number Theory Appl. 38(4) (2016), 363-372.

  23. P. Pongsriiam, Fibonacci and Lucas numbers which are one away from their products, Fibonacci Quart. 55(1) (2017), 29-40.
    MathSciNet    

  24. P. Pongsriiam, Fibonacci and Lucas Numbers Associated with Brocard-Ramanujan Equation, Commun. Korean Math. Soc. 32(3) (2017), 511-522.
    MathSciNet    

  25. S. Ramanujan, Question 469, J. Indian Math. Soc. 5 (1913), 59.

  26. S. Ramanujan, Collected Papers, Chelsea, New York, (1962).

  27. P. K. Ray, Balancing and cobalancing numbers, Ph.D. Thesis, National Institute of Technology, Rourkela, India, 2009.

  28. P. Ribenboim, The book of prime number records, Springer-Verlag, New York (1988).
    MathSciNet     CrossRef

  29. S. S. Rout, Some generalizations and properties of balancing numbers, Ph.D. Thesis, National Institute of Technology, Rourkela, India, 2015.

  30. C. L. Stewart, Primitive divisors of Lucas and Lehmer numbers, in: Transcendence theory: advances and applications, eds. A. Baker and D.W. Masser, Academic Press, New York, (1977), 79-92.
    MathSciNet    

  31. L. Szalay, Diophantine equations with binary recurrences associated to the Brocard-Ramanujan problem, Port. Math. 69 (2012), 213-220.
    MathSciNet     CrossRef

  32. D. T. Walker, On the Diophantine equation mX2-nY2=± 1, Amer. Math. Monthly 74 (1967), 504-513.
    MathSciNet     CrossRef

  33. M. Ward, The intrinsic divisors of Lehmer numbers, Ann. of Math. (2) 62 (1955), 230-236.
    MathSciNet     CrossRef

Glasnik Matematicki Home Page