Glasnik Matematicki, Vol. 54, No. 1 (2019), 233-254.
A NOTE ON THE TRACE THEOREM FOR BESOV-TYPE SPACES OF GENERALIZED SMOOTHNESS ON D-SETS
Vanja Wagner
Department of Mathematics, Faculty of Science, University of Zagreb, 10 000 Zagreb, Croatia
e-mail: wagner@math.hr
Abstract.
The main goal of this paper is to give a complete proof of the trace theorem for Besov-type spaces of generalized smoothness associated with complete Bernstein functions satisfying certain scaling conditions on d-sets D ⊂ℝn, d≤ n. The proof closely follows the classical approach by Jonsson, Wallin in [18] and the trace theorem for classical Besov spaces. Here, the trace space is defined by means of differences. When d=n, as an application of the trace theorem, we give a condition under which the test functions Cc∞(D) are dense in the trace space on D.
2010 Mathematics Subject Classification. 46E35, 60J75, 60G51
Key words and phrases. Function spaces of generalized smoothness, d-sets, trace space, Bernstein functions
Full text (PDF) (free access)
https://doi.org/10.3336/gm.54.1.10
References:
-
D. R. Adams and L. I. Hedberg,
Function spaces and potential theory,
Springer-Verlag, Berlin, 1996.
MathSciNet
CrossRef
-
A. Almeida and A. Caetano,
Real interpolation of generalized Besov-Hardy spaces and
applications
J. Fourier Anal. Appl. 17 (2010), 691-719.
MathSciNet
CrossRef
-
K. Bogdan, K. Burdzy and Z.-Q. Chen,
Censored stable processes,
Probab. Theory Related Fields 127 (2003), 89-152.
MathSciNet
CrossRef
-
F. Cobos and D.L. Fernandez,
Hardy-Sobolev spaces and Besov spaces with a function
parameter, in Function Spaces and Applications (Lund, 1986),
Lecture Notes in Math. 1302, Springer, Berlin, 1988, 158-170.
-
E.W. Farkas,
Function spaces of generalized smoothness and
pseudo-differential operators associated to a continuous negative definite
function,
Habilitationschrift, Ludwig-Maximilian Universität
München, 2002.
-
E.W. Farkas and H.-G. Leopold,
Characterisations of function spaces of generalised smoothness,
Ann. Mat. Pura Appl. (4) 185 (2006), 1-62.
MathSciNet
CrossRef
-
W. Farkas and N. Jacob,
Sobolev spaces on non-smooth domains and Dirichlet forms related to subordinate reflecting diffusions,
Math. Nachr. 224 (2001), 75-104.
MathSciNet
CrossRef
-
W. Farkas, N. Jacob and R. Schilling,
Feller semigroups, Lp-sub-Markovian semigroups, and
applications to pseudo-differential operators with negative definite symbols,
Forum Math. 13 (2001), 51-90.
MathSciNet
CrossRef
-
W. Farkas, N. Jacob and R. Schilling,
Function spaces related to continuous negative definite functions:
ψ-Bessel potential spaces,
Dissertationes Math. (Rozprawy Mat.) 393 (2001), 62 pp.
MathSciNet
CrossRef
-
M. Fukushima, Y. Oshima and M. Takeda,
Dirichlet forms and symmetric Markov processes,
Walter de Gruyter & Co., Berlin, 2011.
MathSciNet
-
N. Jacob,
Feller semigroups, Dirichlet forms, and pseudodifferential
operators,
Forum Math. 4 (1992), 433-446.
MathSciNet
CrossRef
-
N. Jacob,
A class of Feller semigroups generated by pseudo differential
operators,
Math. Z. 215 (1994), 151-166.
MathSciNet
CrossRef
-
N. Jacob,
Pseudo-differential operators and Markov processes,
Akademie-Verlag, Berlin, 1996.
MathSciNet
-
N. Jacob,
Pseudo-differential operators and Markov processes. Vol. I.
Fourier analysis and semigroups,
Imperial College Press, London, 2001.
MathSciNet
CrossRef
-
N. Jacob,
Pseudo-differential operators and Markov processes. Vol. II.
Generators and their potential theory,
Imperial College Press, London, 2002.
MathSciNet
CrossRef
-
N. Jacob,
Pseudo-differential operators and Markov processes. Vol.
III. Markov processes and applications,
Imperial College Press, London, 2005.
MathSciNet
CrossRef
-
N. Jacob and R. Schilling,
Extended Lp Dirichlet spaces,
in: Around the research of Vladimir Maz'ya. I., Springer, New York, 2009, 221-238.
MathSciNet
CrossRef
-
A. Jonsson and H. Wallin,
Function spaces on subsets of ℝn,
Harwood Acad. Publ., 1984.
-
P. Kim, R. Song, and Z. Vondraček,
Martin boundary for some symmetric Lévy processes,
Festschrift Masatoshi Fukushima, World Sci. Publ., Hackensack, 2015, 307-342.
MathSciNet
CrossRef
-
V. Knopova and M. Zähle,
Spaces of generalized smoothness on h-sets and related Dirichlet
forms,
Studia Math. 174 (2006), 277-308.
MathSciNet
CrossRef
-
S.D. Moura,
On some characterizations of Besov spaces of generalized
smoothness,
Math. Nachr. 280 (2007), 1190-1199.
MathSciNet
CrossRef
-
R. Schilling, R. Song and Z. Vondraček,
Bernstein functions. Theory and applications,
Walter de Gruyter & Co., Berlin, 2009.
MathSciNet
-
I. J. Schoenberg,
Metric spaces and completely monotone functions,
Ann. of Math. (2) 39 (1938), 811-841.
MathSciNet
CrossRef
-
H. Triebel,
Theory of function spaces. II,
Birkhäuser, Basel, 1992.
MathSciNet
-
H. Triebel,
Interpolation theory, function spaces, differential
operators,
North-Holland, Amsterdam-New York, 1978.
MathSciNet
-
V. Wagner,
Censored symmetric Lévy-type processes,
preprint, 2018, 20pp.
-
H. Wallin,
The trace to the boundary of Sobolev spaces on a snowflake,
Manuscripta Math. 73 (1991), 117-125.
MathSciNet
CrossRef
-
M. Zähle,
Potential spaces and traces of Lévy processes on h-sets,
J. Contemp. Math. Anal. 44 (2009), 117-145.
MathSciNet
CrossRef
Glasnik Matematicki Home Page