Glasnik Matematicki, Vol. 54, No. 1 (2019), 65-75.
DIOPHANTINE M-TUPLES WITH THE PROPERTY D(N)
Riley Becker and M. Ram Murty
Department of Mathematics, Queen's University, Kingston, Ontario, K7L 3N6, Canada
e-mail: rileydbecker@gmail.com
e-mail: murty@queensu.ca
Abstract.
Let n be a non-zero integer. A set of m positive integers { a1,a2,⋯ ,am} such that aiaj+n is a perfect square for all 1≤ i < j≤ m is called a Diophantine m-tuple with the property D(n). In a series of papers, Dujella studied the quantity Mn= sup {|𝒮|: 𝒮 has the property D(n)} and showed for |n|≥ 400 that
Mn ≤ 15.476 log |n| and if |n| >10100, then Mn < 9.078 log |n|. We refine his argument to show that
Cn≤ 2log |n|+ O(log |n|/(log log |n|)2), where the implied constant is effectively computable and
Cn = sup {|𝒮 ∩ [1,n2]|:𝒮 has the property D(n)}. Together with earlier work of Dujella, this implies
Mn≤ 2.6071 log |n|+ O(log |n|/ (log log |n|)2), where the implied constant is effectively computable.
2010 Mathematics Subject Classification. 11D25, 11N36
Key words and phrases. Diophantine m-tuples, Gallagher's sieve, Vinogradov's inequality
Full text (PDF) (free access)
https://doi.org/10.3336/gm.54.1.05
References:
-
A. Baker and H. Davenport, The equations 3x2-2=y2 and 8x2-7=z2, Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137.
MathSciNet
CrossRef
-
E. Brown, Sets in which xy+k is always a square,
Math. Comp. 45 (1985), 613-620.
MathSciNet
CrossRef
-
L. Caporaso, J. Harris and B. Mazur,
Uniformity of Rational Points, J. Amer. Math. Soc. 10 (1997), 1-35.
MathSciNet
CrossRef
-
A. C. Cojocaru and M. R. Murty,
An introduction to sieve methods and their applications, Cambridge University Press, 2006.
MathSciNet
-
H. Davenport, Multiplicative number theory, Springer-Verlag, New York, 1980.
MathSciNet
-
L. E. Dickson, History of the theory of numbers, Washington Carnegie Institution of Washington, 1923, 513-520.
MathSciNet
-
A. Dujella,
An absolute bound for the size of Diophantine m-tuples,
J. Number Theory 89 (2001), 126-150.
MathSciNet
CrossRef
- Andrej Dujella,
There are only finitely many Diophantine quintuples,
J. Reine Angew. Math. 566 (2004), 183-214.
MathSciNet
CrossRef
-
A. Dujella,
On the size of Diophantine m-tuples,
Math. Proc. Cambridge Philos. Soc. 132 (2002), 23-33.
MathSciNet
CrossRef
-
A. Dujella,
Bounds for the size of sets with the property D(n), Glas. Mat. Ser. III 39(59) (2004), 199-205.
MathSciNet
CrossRef
-
A. Dujella and F. Luca,
Diophantine m-tuples for primes,
Int. Math. Res. Not. 47 (2005), 2913-2940.
MathSciNet
CrossRef
-
P. Dusart, Explicit estimates of some functions over primes, Ramanujan J. 45 (2018), 227-251.
MathSciNet
CrossRef
-
J.-H. Evertse and J. H. Silverman,
Uniform bounds for the number of solutions to Yn=f(X),
Math. Proc. Cambridge Philos. Soc. 100 (1986), 237-248.
MathSciNet
CrossRef
-
P. X. Gallagher,
A larger sieve,
Acta Arith. 18 (1971), 77-81.
MathSciNet
CrossRef
-
H. Gupta and K. Singh,
On k-triad sequences, Internat. J. Math. Math. Sci. 8 (1985), 799-804.
MathSciNet
CrossRef
-
B. He, A. Togbé and V. Ziegler,
There is no Diophantine quintuple, Trans. Amer. Math. Soc. 371 (2019), 6665-6709.
MathSciNet
CrossRef
-
S. P. Mohanty and A. M. S. Ramasamy,
On Pr,k sequences,
Fibonacci Quart. 23 (1985), 36-44.
MathSciNet
-
M. R. Murty, Problems in analytic number theory, Springer, New York, 2008.
MathSciNet
-
G. Robin,
Estimation de la fonction de Tchebychef θ sur le k-ième nombre premier et grandes valeurs de la fonction ω(n) nombre de diviseurs premiers de n, Acta Arit. 42 (1983), 367-389.
MathSciNet
CrossRef
-
J. H. Silverman,
A quantitative version of Siegel's theorem: integral points on elliptic curves and Catalan curves, J. Reine Angew. Math. 378 (1987), 60-100.
MathSciNet
CrossRef
-
I. M. Vinogradov, Elements of number theory, Dover Publications, Inc., New York, 1954.
MathSciNet
-
I. M. Vinogradov, Elements of number theory (Russian), St. Petersburg, 2004.
Glasnik Matematicki Home Page