Glasnik Matematicki, Vol. 54, No. 1 (2019), 1-9.
A LOCAL LIMIT THEOREM FOR COEFFICIENTS OF MODIFIED BORWEIN'S METHOD
Igoris Belovas
Vilnius University,
Institute of Data Science and Digital Technologies,
Akademijos st. 4, 08412 Vilnius, Lithuania
and
Vilnius Gediminas Technical University , 10223 Vilnius, Lithuania
e-mail: Igoris.Belovas@mii.vu.lt
Abstract.
The paper extends the study of the modified Borwein method for the calculation of the Riemann zeta-function. It presents an alternative perspective on the proof of a local limit theorem for coefficients of the method. The new approach is based on the connection with the limit theorem applied to asymptotic enumeration.
2010 Mathematics Subject Classification. 05A16, 11M99
Key words and phrases. Local limit theorem, asymptotic enumeration, asymptotic normality
Full text (PDF) (free access)
https://doi.org/10.3336/gm.54.1.01
References:
- I. Belovas, L. Sakalauskas, Limit theorems for the coefficients of the modified Borwein method for the calculation of the Riemann zeta-function values, Colloq. Math. 151 (2018), 217-227.
MathSciNet
CrossRef
- I. Belovas, A central limit theorem for coefficients of the modified Borwein method for the calculation of the Riemann zeta-function, Lith. Math. J. 59 (2019), 17-23.
MathSciNet
CrossRef
- E. A. Bender, Central and local limit theorems applied to asymptotic enumeration, J. Combin. Theory Ser. A. 15 (1973), 91-111.
MathSciNet
CrossRef
- P. Borwein, An efficient algorithm for the Riemann Zeta function, in: Constructive, Experimental, and Nonlinear Analysis (Limoges, 1999), CRC, Boca Raton, 2000, 29-34.
MathSciNet
- H.-K. Hwang, On convergence rates in the central limit theorems for combinatorial structures European J. Combin., 19 (1998), 329-343.
MathSciNet
CrossRef
- A. M. Odlyzko, Asymptotic enumeration methods, in: Handbook of Combinatorics, vol. 2, Elsevier Sci. B. V., Amsterdam, 1995, 1063-1229.
MathSciNet
Glasnik Matematicki Home Page