Glasnik Matematicki, Vol. 53, No. 2 (2018), 403-436.

ON THE COMBINATORICS OF FACES OF TREES AND ANODYNE EXTENSIONS OF DENDROIDAL SETS

Matija Bašić

Department of Mathematics, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, Croatia
e-mail: mbasic@math.hr


Abstract.   We discuss the combinatorics of faces of trees in the context of dendroidal sets and develop a systematic treatment of dendroidal anodyne extensions. As the main example and our motivation, we prove the pushout-product property for the stable model structure on dendroidal sets.

2010 Mathematics Subject Classification.   55U05, 55P48, 18G30

Key words and phrases.   Dendroidal sets, anodyne extensions, pushout-product property


Full text (PDF) (free access)

DOI: 10.3336/gm.53.2.11


References:

  1. M. Bašić, Stable homotopy theory of dendroidal sets, PhD thesis, Radboud University Nijmegen, 2015.

  2. M. Bašić and T. Nikolaus, Dendroidal sets as models for connective spectra, J. K-theory 14 (2014), 387-421.
    MathSciNet     CrossRef

  3. J. M. Boardman and R. M. Vogt, Homotopy invariant algebraic structures on topological spaces, Springer-Verlag, 1973.
    MathSciNet    

  4. P. Boavida and I. Moerdijk, Dendroidal spaces, γ-spaces and the special Barratt-Priddy-Quillen theorem, preprint arXiv:1701.06459v1, 2017.

  5. D.-C. Cisinski and I. Moerdijk, Dendroidal sets as models for homotopy operads, J. Topol. 4 (2011), 257-299. For Erratum see v2, arXiv:0902.1954, 2014.
    MathSciNet     CrossRef

  6. D.-C. Cisinski and I. Moerdijk, Dendroidal Segal spaces and ∞-operads, J. Topol. 6 (2013), 675-704.
    MathSciNet     CrossRef

  7. D.-C. Cisinski and I. Moerdijk, Dendroidal sets and simplicial operads, J. Topol. 6 (2013), 705-756.
    MathSciNet     CrossRef

  8. P. Gabriel and M. Zisman, Calculus of fractions and homotopy theory, Springer, 1967.
    MathSciNet    

  9. J. J. Gutiérrez, A. Lukacs and I. Weiss, Dold-Kan correspondence for dendroidal abelian groups, J. Pure App. Algebra 215 (2011), 1669-1687.
    MathSciNet     CrossRef

  10. E. Hoffbeck and I. Moerdijk, Shuffles of trees, European J. Combin. 71 (2018), 55-72.
    MathSciNet     CrossRef

  11. G. Heuts, Algebras over infinity-operads, preprint arXiv:1110.1776, 2011.

  12. G. Heuts, An infinite loop space machine for ∞-operads, preprint arXiv:1112.0625.

  13. G. Heuts, V. Hinich and I. Moerdijk, The equivalence between Lurie's model and the dendroidal model for infinity-operads, Adv. Math. 302 (2016), 869-1043.
    MathSciNet     CrossRef

  14. I. Moerdijk and B. Toën, Simplicial methods for operads and algebraic geometry, Birkhäuser, Basel, 2010.
    MathSciNet     CrossRef

  15. I. Moerdijk and I. Weiss, Dendroidal sets. Algebr. Geom. Topol. 7 (2007), 1441-1470.
    MathSciNet     CrossRef

  16. I. Moerdijk and I. Weiss, On inner Kan complexes in the category of dendroidal sets, Adv. Math. 221 (2009), 343-389.
    MathSciNet     CrossRef

Glasnik Matematicki Home Page