Glasnik Matematicki, Vol. 53, No. 2 (2018), 403-436.
ON THE COMBINATORICS OF FACES OF TREES AND ANODYNE EXTENSIONS OF DENDROIDAL SETS
Matija Bašić
Department of Mathematics,
University of Zagreb,
Bijenička cesta 30, 10000 Zagreb,
Croatia
e-mail: mbasic@math.hr
Abstract.
We discuss the combinatorics of faces of trees in the context of dendroidal sets and develop a systematic treatment of dendroidal anodyne extensions. As the main example and our motivation, we prove the pushout-product property for the stable model structure on dendroidal sets.
2010 Mathematics Subject Classification. 55U05, 55P48, 18G30
Key words and phrases. Dendroidal sets, anodyne extensions, pushout-product property
Full text (PDF) (free access)
DOI: 10.3336/gm.53.2.11
References:
- M. Bašić, Stable homotopy theory of dendroidal sets, PhD thesis, Radboud University Nijmegen, 2015.
- M. Bašić and T. Nikolaus, Dendroidal sets as models for connective spectra,
J. K-theory 14 (2014), 387-421.
MathSciNet
CrossRef
- J. M. Boardman and R. M. Vogt, Homotopy invariant algebraic structures on topological spaces, Springer-Verlag, 1973.
MathSciNet
- P. Boavida and I. Moerdijk, Dendroidal spaces, γ-spaces and the special Barratt-Priddy-Quillen theorem, preprint arXiv:1701.06459v1, 2017.
- D.-C. Cisinski and I. Moerdijk, Dendroidal
sets as models for homotopy operads, J. Topol. 4 (2011), 257-299. For Erratum see v2, arXiv:0902.1954, 2014.
MathSciNet
CrossRef
- D.-C. Cisinski and I. Moerdijk, Dendroidal
Segal spaces and ∞-operads, J. Topol. 6 (2013), 675-704.
MathSciNet
CrossRef
- D.-C. Cisinski and I. Moerdijk, Dendroidal
sets and simplicial operads, J. Topol. 6 (2013), 705-756.
MathSciNet
CrossRef
- P. Gabriel and M. Zisman, Calculus of fractions and homotopy theory, Springer, 1967.
MathSciNet
- J. J. Gutiérrez, A. Lukacs and I. Weiss, Dold-Kan correspondence for dendroidal abelian groups, J. Pure App. Algebra 215 (2011), 1669-1687.
MathSciNet
CrossRef
- E. Hoffbeck and I. Moerdijk, Shuffles of trees, European J. Combin. 71 (2018), 55-72.
MathSciNet
CrossRef
- G. Heuts, Algebras over infinity-operads, preprint arXiv:1110.1776, 2011.
- G. Heuts, An infinite loop space machine for ∞-operads, preprint arXiv:1112.0625.
- G. Heuts, V. Hinich and I. Moerdijk, The equivalence between Lurie's model and the dendroidal model for infinity-operads, Adv. Math. 302 (2016), 869-1043.
MathSciNet
CrossRef
- I. Moerdijk and B. Toën, Simplicial methods for operads and algebraic geometry,
Birkhäuser, Basel, 2010.
MathSciNet
CrossRef
- I. Moerdijk and I. Weiss, Dendroidal sets. Algebr. Geom. Topol. 7 (2007), 1441-1470.
MathSciNet
CrossRef
- I. Moerdijk and I. Weiss, On inner Kan complexes in the category of dendroidal sets, Adv. Math. 221 (2009), 343-389.
MathSciNet
CrossRef
Glasnik Matematicki Home Page