Glasnik Matematicki, Vol. 53, No. 2 (2018), 385-401.

MARKOV-LIKE SET-VALUED FUNCTIONS ON INTERVALS AND THEIR INVERSE LIMITS

Hayato Imamura

Faculty of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinkuju-ku, Tokyo, 169-8555, Japan
e-mail: hayato-imamura@asagi.waseda.jp


Abstract.   We introduce Markov-like functions on intervals as a generalization of generalized Markov interval functions and define the notation of the same pattern between Markov-like functions. Then we show that two generalized inverse limits with Markov-like bonding functions having the same pattern are homeomorphic. This result gives a generalization of the results of S. Holte ([9]) and I. Banič and T. Lunder ([5]).

2010 Mathematics Subject Classification.   54F15, 54C60

Key words and phrases.   Inverse limits, upper semi-continuous functions, Markov maps, Markov-like functions


Full text (PDF) (free access)

DOI: 10.3336/gm.53.2.10


References:

  1. L. Alvin and J. P. Kelly, Markov set-valued functions and their inverse limits, Topology Appl. 241 (2018), 102-114.
    MathSciNet    

  2. I. Banič and M. Črepnjak, Markov pairs, quasi Markov functions and inverse limits, Houston J. Math. 44 (2018), 695-707.

  3. I. Banič, M. Črepnjak, M. Merhar and U. Milutinovič, Path through inverse limits, Topology Appl. 158 (2011), 1099-1112.
    MathSciNet     CrossRef

  4. I. Banič, M. Črepnjak, M. Merhar and U. Milutinovič, Towards the complete classification of generalized tent maps inverse limits, Topology Appl. 160 (2013), 63-73.
    MathSciNet     CrossRef

  5. I. Banič and T. Lunder, Inverse limits with generalized Markov interval functions, Bull. Malays. Math. Sci. Soc. 39 (2016), 839-848.
    MathSciNet     CrossRef

  6. W. J. Charatonik and R. P. Roe, Inverse limits of continua having trivial shape, Houston J. Math. 38 (2012), 1307-1312.
    MathSciNet    

  7. M. Črepnjak and T. Lunder, Inverse limits with countably Markov interval functions, Glas. Mat. Ser. III 51 (2016), 491-501.
    MathSciNet     CrossRef

  8. G. Erceg and J. Kennedy, Topological entropy on closed sets in [0,1] 2, Topology Appl. 246 (2018), 106-136.
    MathSciNet     CrossRef

  9. S. E. Holte, Inverse limits of Markov interval maps, Topology Appl. 123 (2002), 421-427.
    MathSciNet     CrossRef

  10. W. T. Ingram, An Introduction to Inverse Limits with Set-valued Functions, Springer, New York, 2012.
    MathSciNet     CrossRef

  11. W. T. Ingram and W. S. Mahavier, Inverse limits of upper semi-continuous set valued functions, Houston J. Math. 32 (2006) 119-130.
    MathSciNet    

  12. H. Kato, On dimension and shape of inverse limits with set-valued functions, Fund. Math. 236 (2017), 83-99.
    MathSciNet     CrossRef

  13. K. Kawamura and J. Kennedy, Shift maps and their variants on inverse limits with set-valued functions, Topology Appl. 239 (2018), 92-114.
    MathSciNet     CrossRef

  14. J. P. Kelly and T. Tennant, Topological entropy of set-valued functions, Houston J. Math. 43 (2017), 263-282.
    MathSciNet    

  15. J. Kennedy and V. Nall, Dynamical properties of shift maps on inverse limits with a set valued function, Ergodic Theory Dynam. Systems 38 (2018), 1499-1524.
    MathSciNet     CrossRef

  16. W. S. Mahavier, Inverse limits with subsets of [0,1] × [0,1], Topology Appl. 141 (2004), 225-231.
    MathSciNet     CrossRef

  17. B. Raines, Orbits of turning points for maps of finite graphs and inverse limit spaces, in: Proceedings of the Ninth Prague Topological Symposium, 2001, 253-263.
    MathSciNet    

Glasnik Matematicki Home Page