Glasnik Matematicki, Vol. 53, No. 2 (2018), 385-401.
MARKOV-LIKE SET-VALUED FUNCTIONS ON INTERVALS AND THEIR INVERSE LIMITS
Hayato Imamura
Faculty of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinkuju-ku, Tokyo, 169-8555, Japan
e-mail: hayato-imamura@asagi.waseda.jp
Abstract.
We introduce Markov-like functions on intervals
as a generalization of generalized Markov interval functions
and define the notation of the same pattern between Markov-like functions.
Then we show that two generalized inverse limits with Markov-like bonding functions
having the same pattern are homeomorphic.
This result gives a generalization of the results of
S. Holte ([9]) and I. Banič and T. Lunder ([5]).
2010 Mathematics Subject Classification. 54F15, 54C60
Key words and phrases. Inverse limits, upper semi-continuous functions, Markov maps, Markov-like functions
Full text (PDF) (free access)
DOI: 10.3336/gm.53.2.10
References:
- L. Alvin and J. P. Kelly, Markov set-valued functions and their inverse limits,
Topology Appl. 241 (2018), 102-114.
MathSciNet
- I. Banič and M. Črepnjak,
Markov pairs, quasi Markov functions and inverse limits,
Houston J. Math. 44 (2018), 695-707.
- I. Banič, M. Črepnjak, M. Merhar and U. Milutinovič, Path through inverse limits,
Topology Appl. 158 (2011), 1099-1112.
MathSciNet
CrossRef
- I. Banič, M. Črepnjak, M. Merhar and U. Milutinovič,
Towards the complete classification of generalized tent maps inverse limits, Topology Appl. 160 (2013), 63-73.
MathSciNet
CrossRef
- I. Banič and T. Lunder,
Inverse limits with generalized Markov interval functions,
Bull. Malays. Math. Sci. Soc.
39 (2016), 839-848.
MathSciNet
CrossRef
- W. J. Charatonik and R. P. Roe,
Inverse limits of continua having trivial shape,
Houston J. Math. 38 (2012), 1307-1312.
MathSciNet
- M. Črepnjak and T. Lunder,
Inverse limits with countably Markov interval functions,
Glas. Mat. Ser. III 51 (2016), 491-501.
MathSciNet
CrossRef
- G. Erceg and J. Kennedy,
Topological entropy on closed sets in [0,1] 2,
Topology Appl. 246 (2018), 106-136.
MathSciNet
CrossRef
- S. E. Holte, Inverse limits of Markov interval maps,
Topology Appl. 123 (2002), 421-427.
MathSciNet
CrossRef
- W. T. Ingram, An Introduction to Inverse Limits with Set-valued Functions, Springer, New York, 2012.
MathSciNet
CrossRef
- W. T. Ingram and W. S. Mahavier, Inverse limits of upper semi-continuous set valued functions, Houston J. Math. 32 (2006) 119-130.
MathSciNet
- H. Kato,
On dimension and shape of inverse limits with set-valued functions,
Fund. Math. 236 (2017), 83-99.
MathSciNet
CrossRef
- K. Kawamura and J. Kennedy,
Shift maps and their variants on inverse limits with set-valued functions,
Topology Appl. 239 (2018), 92-114.
MathSciNet
CrossRef
- J. P. Kelly and T. Tennant,
Topological entropy of set-valued functions, Houston J. Math. 43 (2017), 263-282.
MathSciNet
- J. Kennedy and V. Nall,
Dynamical properties of shift maps on inverse limits with a set valued function, Ergodic Theory Dynam. Systems 38 (2018), 1499-1524.
MathSciNet
CrossRef
- W. S. Mahavier,
Inverse limits with subsets of [0,1] × [0,1], Topology Appl. 141 (2004), 225-231.
MathSciNet
CrossRef
- B. Raines,
Orbits of turning points for maps of finite graphs and inverse limit spaces,
in: Proceedings of the Ninth Prague Topological Symposium, 2001, 253-263.
MathSciNet
Glasnik Matematicki Home Page