Glasnik Matematicki, Vol. 53, No. 2 (2018), 359-370.
Ri-SETS, PSEUDO-CONTRACTIBILITY AND WEAK CONTRACTIBILITY ON HYPERSPACES OF CONTINUA
Félix Capulín, Leonardo Juárez-Villa and Fernando Orozco-Zitli
Facultad de Ciencias,, Instituto Literario No. 100, Col. Centro, C. P. 50000,, Toluca, Estado de México,
México
e-mail: fcapulin@gmail.com
e-mail: juvile06@gmail.com, ljuarezv@uaemex.mx
e-mail: forozcozitli@gmail.com
Abstract.
In this paper we discuss the notions of pseudo-contractibility and weak contractibility on hyperspaces of (Hausdorff) continua. Also we prove that if a continuum X contains an Ri-set then it is not pseudo-contractible. As a consequence we have that the existence of an Ri-set in a continuum X implies non(pseudo)-contractibility of some hyperspaces.
2010 Mathematics Subject Classification. 54C05, 54C10, 54B20, 54B15
Key words and phrases. Continuum, hyperspace, contractibilty
Full text (PDF) (free access)
DOI: 10.3336/gm.53.2.08
References:
- B. S. Baik, K. Hur and C. J. Rhee, Ri-sets and contractibility, J. Korean Math. Soc. 34 (1997), 309-319.
MathSciNet
- D. Bellamy, A null pseudohomotopic map onto a pseudo-arc, Topology Proc. 11 (1986), 1-5.
MathSciNet
- F. Capulín, L. Juárez-Villa and F. Orozco-Zitli, General properties on pseudo-contractibility, Topology Appl. 247 (2018), 57-71.
- E. Castañeda, A unicoherent continuum whose second symmetric product is not unicoherent, Topology Proc. 23 (1998), 61-67.
MathSciNet
- J. J. Charatonik and A. Illanes, N-sequences and contractibility in hyperspaces, Houston J. Math. 32 (2006), 745-756.
MathSciNet
- N. Chinen and A. Koyama, On the symmetric hyperspace of the circle, Topology Appl. 157 (2010), 2613-2621.
MathSciNet
CrossRef
- W. Dk̨ebski, Pseudo-contractibility of the sin(1/x)-curve, Houston J. Math. 20 (1994), 365-367.
MathSciNet
- A. Illanes, Hiperespacios de continuos, Sociedad
Matemática Mexicana, México, 2004.
MathSciNet
- A. Illanes, Pseudo-homotopies of the pseudo-arc, Comment. Math. Univ. Carolin. 53 (2012), 629-635.
MathSciNet
- A. Illanes and S. B. Nadler Jr., Hyperspaces. Fundamentals and recent advances, Marcel Dekker, Inc., New York, 1999.
MathSciNet
- H. Katsuura, Pseudocontraction and homotopy of the sin(1/x) curve, Proc. Amer. Math. Soc. 115 (1992), 1129-1138.
MathSciNet
CrossRef
- J. L. Kelley, Hyperspaces of a continuum, Trans. Amer. Math. Soc. 52 (1942), 22-36.
MathSciNet
CrossRef
- K. Kuratowski, Topology. Vol. 2, Academic Press, New York, London, 1968.
MathSciNet
- S. Macías and S. B. Nadler, Jr., On hereditarily decomposable homogeneous continua, Topology Proc. 34 (2009), 131-145.
MathSciNet
- S. Macías, Retractions and hyperspaces, Glas. Mat. Ser. III 46(66) (2011), 471-481.
MathSciNet
CrossRef
- S. B. Nadler, Continuum theory. An introduction, Marcel Dekker, Inc., New York, 1992.
MathSciNet
- S. B. Nadler Jr., Hyperspaces of sets, Marcel Dekker, Inc., New York-Basel, 1978.
MathSciNet
- D. G. Paulowich, Weak contractibility and hyperspaces, Fund. Math. 94 (1977), 41-47.
MathSciNet
CrossRef
- M. Sobolewski, Pseudo-contractibility of chainable continua, Topology Appl. 154 (2007), 2983-2987.
MathSciNet
CrossRef
- G. T. Whyburn, Analytic topology, American Mathematical Society, New York, 1942.
MathSciNet
Glasnik Matematicki Home Page