Glasnik Matematicki, Vol. 53, No. 2 (2018), 359-370.

Ri-SETS, PSEUDO-CONTRACTIBILITY AND WEAK CONTRACTIBILITY ON HYPERSPACES OF CONTINUA

Félix Capulín, Leonardo Juárez-Villa and Fernando Orozco-Zitli

Facultad de Ciencias,, Instituto Literario No. 100, Col. Centro, C. P. 50000,, Toluca, Estado de México, México
e-mail: fcapulin@gmail.com
e-mail: juvile06@gmail.com, ljuarezv@uaemex.mx
e-mail: forozcozitli@gmail.com


Abstract.   In this paper we discuss the notions of pseudo-contractibility and weak contractibility on hyperspaces of (Hausdorff) continua. Also we prove that if a continuum X contains an Ri-set then it is not pseudo-contractible. As a consequence we have that the existence of an Ri-set in a continuum X implies non(pseudo)-contractibility of some hyperspaces.

2010 Mathematics Subject Classification.   54C05, 54C10, 54B20, 54B15

Key words and phrases.   Continuum, hyperspace, contractibilty


Full text (PDF) (free access)

DOI: 10.3336/gm.53.2.08


References:

  1. B. S. Baik, K. Hur and C. J. Rhee, Ri-sets and contractibility, J. Korean Math. Soc. 34 (1997), 309-319.
    MathSciNet    

  2. D. Bellamy, A null pseudohomotopic map onto a pseudo-arc, Topology Proc. 11 (1986), 1-5.
    MathSciNet    

  3. F. Capulín, L. Juárez-Villa and F. Orozco-Zitli, General properties on pseudo-contractibility, Topology Appl. 247 (2018), 57-71.

  4. E. Castañeda, A unicoherent continuum whose second symmetric product is not unicoherent, Topology Proc. 23 (1998), 61-67.
    MathSciNet    

  5. J. J. Charatonik and A. Illanes, N-sequences and contractibility in hyperspaces, Houston J. Math. 32 (2006), 745-756.
    MathSciNet    

  6. N. Chinen and A. Koyama, On the symmetric hyperspace of the circle, Topology Appl. 157 (2010), 2613-2621.
    MathSciNet     CrossRef

  7. W. Dk̨ebski, Pseudo-contractibility of the sin(1/x)-curve, Houston J. Math. 20 (1994), 365-367.
    MathSciNet    

  8. A. Illanes, Hiperespacios de continuos, Sociedad Matemática Mexicana, México, 2004.
    MathSciNet    

  9. A. Illanes, Pseudo-homotopies of the pseudo-arc, Comment. Math. Univ. Carolin. 53 (2012), 629-635.
    MathSciNet    

  10. A. Illanes and S. B. Nadler Jr., Hyperspaces. Fundamentals and recent advances, Marcel Dekker, Inc., New York, 1999.
    MathSciNet    

  11. H. Katsuura, Pseudocontraction and homotopy of the sin(1/x) curve, Proc. Amer. Math. Soc. 115 (1992), 1129-1138.
    MathSciNet     CrossRef

  12. J. L. Kelley, Hyperspaces of a continuum, Trans. Amer. Math. Soc. 52 (1942), 22-36.
    MathSciNet     CrossRef

  13. K. Kuratowski, Topology. Vol. 2, Academic Press, New York, London, 1968.
    MathSciNet    

  14. S. Macías and S. B. Nadler, Jr., On hereditarily decomposable homogeneous continua, Topology Proc. 34 (2009), 131-145.
    MathSciNet    

  15. S. Macías, Retractions and hyperspaces, Glas. Mat. Ser. III 46(66) (2011), 471-481.
    MathSciNet     CrossRef

  16. S. B. Nadler, Continuum theory. An introduction, Marcel Dekker, Inc., New York, 1992.
    MathSciNet    

  17. S. B. Nadler Jr., Hyperspaces of sets, Marcel Dekker, Inc., New York-Basel, 1978.
    MathSciNet    

  18. D. G. Paulowich, Weak contractibility and hyperspaces, Fund. Math. 94 (1977), 41-47.
    MathSciNet     CrossRef

  19. M. Sobolewski, Pseudo-contractibility of chainable continua, Topology Appl. 154 (2007), 2983-2987.
    MathSciNet     CrossRef

  20. G. T. Whyburn, Analytic topology, American Mathematical Society, New York, 1942.
    MathSciNet    

Glasnik Matematicki Home Page