Glasnik Matematicki, Vol. 53, No. 2 (2018), 343-357.

ON UNBOUNDED POLYNOMIAL DYNAMICAL SYSTEMS

Hamza Boujemaa and Said El Qotbi

Département de Mathématiques, Mohammed V University in Rabat, 1014RP Rabat, Morocco
e-mail: boujemaa@fsr.ac.ma

Systèmes Dynamiques, A3D, Mohammed V University in Rabat, 1014RP Rabat, Morocco
e-mail: Qotbis@gmail.com


Abstract.   Suppose given a polynomial dynamical system of degree m. It is known that if the algebra associated to the corresponding homogeneous dynamical system of degree m has an idempotent element then the original dynamical system is unbounded. In this work, we give a sufficient condition ensuring the unboundedness even when there is no idempotent. Some applications are also given.

2010 Mathematics Subject Classification.   34A34, 17A99

Key words and phrases.   Polynomial dynamical systems, homogenization, unboundedness


Full text (PDF) (free access)

DOI: 10.3336/gm.53.2.07


References:

  1. H. Boujemaa, S. E. Qotbi and H. Rouiouih, Stability of critical points of quadratic homogeneous dynamical systems, Glas. Mat. Ser. III 51(71) (2016), 165-173.
    MathSciNet     CrossRef

  2. A. Cima and J. Llibre, Bounded polynomial vector fields, Trans. Amer. Math. Soc. 318 (1990), 557-579.
    MathSciNet     CrossRef

  3. C. S. Coleman, Boundedness and unboundedness in polynomial differential systems, Nonlinear Anal. 8 (1984), 1287-1294.
    MathSciNet     CrossRef

  4. R. J. Dickson and L. M. Perko, Quadratic differential systems, Lockheed Res. Rep. No. LMSC L-56-68-1, Lockheed Palo Alto Res. Lab, 1968.

  5. M. K. Kinyon and A. A. Sagle, Quadratic dynamical systems and algebras, J. Differential Equations 117 (1995), 67-126.
    MathSciNet     CrossRef

  6. L. Markus, Quadratic differential equations and non-associative algebra, in: 1960 Contributions to the theory of nonlinear oscillations, Vol. V, Princeton Univ. Press, Princeton, 1960, 185-213.
    MathSciNet    

  7. S. Walcher, Algebras and differential equations, Hadronic Press, Palm Harbor, 1991.
    MathSciNet    

Glasnik Matematicki Home Page