Glasnik Matematicki, Vol. 53, No. 2 (2018), 331-342.

NEAR-IDEMPOTENTS, NEAR-NILPOTENTS AND STABILITY OF CRITICAL POINTS FOR RICCATI EQUATIONS

Borut Zalar and Matej Mencinger

Faculty of Civil Engineering,Transportation Engineering and Architecture, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia
e-mail: borut.zalar@um.si

Faculty of Civil Engineering,Transportation Engineering and Architecture, University of Maribor, Smetanova 17, 2000 Maribor,
Institute of Mathematics, Physics and Mechanics, Jadranska 19, 1000 Ljubljana,
Center for Applied Mathematics and Theoretical Physics, University of Maribor, Mladinska 3, 2000 Maribor, Slovenia
e-mail: matej.mencinger@um.si


Abstract.   The paper introduces two algebraic concepts, near-idempotents and near-nilpotents associated to subspaces 𝒩 of critical points, which can be used to re-phrase a theorem due to Boujemaa, El Qotbi and Rouiouih on stability for the Ricatti equation, x'(t)=x(t)2, associated to algebra 𝒜 ≈ ℝd. Using this concepts their result corresponds to the case dim 𝒩=1. Our main results are a generalization of the above mentioned theorem to 𝒩 of arbitrary dimension and a counter-example which shows, even in the general setting, that the essential condition that critical points must be eigenvectors of a suitable multiplication operator cannot be omitted from the formulation due to Boujemaa et al.

2010 Mathematics Subject Classification.   34A34, 17A99

Key words and phrases.   Quadratic differential systems, non-associative algebra, singular points, stability, near-nilpotent, near-idempotent


Full text (PDF) (free access)

DOI: 10.3336/gm.53.2.06


References:

  1. J. Argemi, Sur les points singuliers multiples de systèmes dynamiques dans 2, Ann. Mat. Pura Appl. (4) 79 (1968), 35-69.
    MathSciNet     CrossRef

  2. Z. Balanov and Y. Krasnov, Complex structures in algebra, topology and differential equations, Georgian Math. J. 21 (2014), 249-260.
    MathSciNet    

  3. H. Boujemaa, M. Rachidi and A. Micali, On a class of nonassociative algebras: a reduction theorem for their associated quadratic systems, Algebras Groups Geom. 19 (2002), 73-83.
    MathSciNet    

  4. H. Boujemaa, S. El Qotbi, H. Rouiouih, Stability of critical points of quadratic homogeneous dynamical systems, Glas. Mat. Ser. III 51(71) (2016), 165-173.
    MathSciNet     CrossRef

  5. I. Burdujan, A class of commutative algebras and their applications in Lie triple system theory, ROMAI J. 3 (2007), 15-39.
    MathSciNet    

  6. I. Burdujan, Automorphisms and derivations of homogeneous quadratic differential systems, ROMAI J. 6 (2010) 15-28.
    MathSciNet    

  7. C. B. Collins, Algebraic classification of homogeneous polynomial vector fields in the plane, Japan J. Indust. Appl. Math. 13 (1996), 63-91.
    MathSciNet     CrossRef

  8. C. B. Collins, Two-dimensional homogeneous polynomial vector fields with common factors, J. Math. Anal. Appl. 181 (1994), 836-863.
    MathSciNet     CrossRef

  9. T. Date and M. Iri, Canonical forms of real homogeneous quadratic transformations, J. Math. Anal. Appl. 56 (1976), 650-682.
    MathSciNet     CrossRef

  10. J. L. Kaplan and J. A. Yorke, Nonassociative, real algebras and quadratic differential equations, Nonlinear Anal. 3 (1979), 49-51.
    MathSciNet     CrossRef

  11. M. K. Kinyon and A. A. Sagle, Differential systems and algebras, in Differential equations, dynamical systems, and control science, Dekker NY, 1994, 115-141.
    MathSciNet    

  12. M. K. Kinyon and A. A. Sagle, Quadratic dynamical systems and algebras, J. Differential Equations 117 (1995), 67-126.
    MathSciNet     CrossRef

  13. Y. Krasnov, Properties of ODEs and PDEs in algebras, Complex Anal. Oper. Theory 7 (2013), 623-634.
    MathSciNet     CrossRef

  14. Y. Krasnov and I. Messika, Differential and integral equations in algebra, Funct. Differ. Equ. 21 (2014), 137-146.
    MathSciNet    

  15. M. Kutnjak and M. Mencinger, A family of completely periodic quadratic discrete dynamical system, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 18 (2008), 1425-1433.
    MathSciNet     CrossRef

  16. L. Lyagina, The integral curves of the equation y' = (ax2 + bxy + cy2)/(dx2 + exy +fy2), (Russian) Uspehi Matem. Nauk (N.S.) 6 (1951), 171-183.
    MathSciNet    

  17. L. Markus, Quadratic differential equations and non-associative algebras, in Contributions to the theory of nonlinear oscillations, 1960, 185-213.
    MathSciNet    

  18. N. Mehdi and M. Mohsen, Classification the integral curves of a second degree homogeneous ODE, Math. Sci. Q. J. 4 (2010), 371-381.
    MathSciNet    

  19. M. Mencinger, On stability of the origin in quadratic systems of ODEs via Markus approach, Nonlinearity 16 (2003) 201-218.
    MathSciNet     CrossRef

  20. M. Mencinger, Stability analysis of critical points in quadratic systems in 3 which contain a plane of critical points, in Let's face chaos through nonlinear dynamics (Maribor, 2002), Progr. Theoret. Phys. Suppl. 150 (2003), 388-392.
    MathSciNet     CrossRef

  21. M. Mencinger, On stability of Riccati differential equation X'=TX+Q(X) in n, Proc. Edinb. Math. Soc. (2) 45 (2002), 601-615.
    MathSciNet     CrossRef

  22. M. Mencinger and M.Kutnjak, The dynamics of NQ-systems in the plane, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 19 (2009), 117-133.
    MathSciNet     CrossRef

  23. M. Mencinger and B. Zalar, On stability of critical points of quadratic differential equations in nonassociative algebras, Glas. Mat. Ser. III 38(58) (2003), 19-27.
    MathSciNet     CrossRef

  24. M. Mencinger, B. Zalar, A class of nonassociative algebras arising from quadratic ODEs, Comm. Algebra. 33 (2005), 807-828.
    MathSciNet     CrossRef

  25. H. C. Myung and A. A. Sagle, Quadratic differential equations and algebras, Contemp. Math. 131, AMS, Providence, 1992, 659-672.
    MathSciNet     CrossRef

  26. S. Walcher, Algebras and differential equations, Hadronic Press, Inc., Palm Harbor, 1991.
    MathSciNet    

Glasnik Matematicki Home Page