Glasnik Matematicki, Vol. 53, No. 2 (2018), 331-342.
NEAR-IDEMPOTENTS, NEAR-NILPOTENTS AND STABILITY OF CRITICAL POINTS FOR RICCATI EQUATIONS
Borut Zalar and Matej Mencinger
Faculty of Civil
Engineering,Transportation Engineering and Architecture,
University of Maribor, Smetanova 17, 2000 Maribor,
Slovenia
e-mail: borut.zalar@um.si
Faculty of Civil
Engineering,Transportation Engineering and Architecture,
University of Maribor, Smetanova 17, 2000 Maribor,
Institute of Mathematics, Physics and Mechanics,
Jadranska 19, 1000 Ljubljana,
Center for Applied Mathematics and Theoretical Physics,
University of Maribor,
Mladinska 3, 2000 Maribor,
Slovenia
e-mail: matej.mencinger@um.si
Abstract.
The paper introduces two algebraic concepts, near-idempotents and
near-nilpotents associated to subspaces 𝒩 of critical points,
which can be used to re-phrase a theorem due to Boujemaa, El Qotbi and Rouiouih on stability for the Ricatti
equation, x'(t)=x(t)2, associated to algebra 𝒜 ≈ ℝd. Using this concepts their
result corresponds to the case dim 𝒩=1.
Our main results are a generalization of the above mentioned theorem to 𝒩 of arbitrary dimension and a counter-example which shows, even
in the general setting, that the essential condition that critical points must be eigenvectors of a suitable
multiplication operator cannot be omitted from the formulation due to Boujemaa et al.
2010 Mathematics Subject Classification. 34A34, 17A99
Key words and phrases. Quadratic differential systems,
non-associative algebra, singular points, stability, near-nilpotent, near-idempotent
Full text (PDF) (free access)
DOI: 10.3336/gm.53.2.06
References:
- J. Argemi, Sur les points singuliers multiples de systèmes dynamiques dans
ℝ2, Ann. Mat. Pura Appl. (4) 79 (1968), 35-69.
MathSciNet
CrossRef
- Z. Balanov and Y. Krasnov, Complex structures in algebra, topology and differential equations, Georgian Math. J. 21 (2014), 249-260.
MathSciNet
- H. Boujemaa, M. Rachidi and A. Micali, On a class of
nonassociative algebras: a reduction theorem for their associated quadratic
systems, Algebras Groups Geom. 19 (2002), 73-83.
MathSciNet
- H. Boujemaa, S. El Qotbi, H. Rouiouih, Stability of
critical points of quadratic homogeneous dynamical systems, Glas. Mat. Ser.
III 51(71) (2016), 165-173.
MathSciNet
CrossRef
- I. Burdujan, A class of commutative algebras and
their applications in Lie triple system theory, ROMAI J. 3 (2007), 15-39.
MathSciNet
- I. Burdujan, Automorphisms and derivations of
homogeneous quadratic differential systems, ROMAI J. 6 (2010) 15-28.
MathSciNet
- C. B. Collins, Algebraic classification of homogeneous polynomial vector fields in the plane,
Japan J. Indust. Appl. Math. 13 (1996), 63-91.
MathSciNet
CrossRef
- C. B. Collins, Two-dimensional homogeneous polynomial vector fields with common factors, J. Math. Anal. Appl. 181 (1994), 836-863.
MathSciNet
CrossRef
- T. Date and M. Iri, Canonical forms of real homogeneous quadratic transformations, J. Math. Anal. Appl. 56 (1976), 650-682.
MathSciNet
CrossRef
- J. L. Kaplan and J. A. Yorke, Nonassociative, real algebras
and quadratic differential equations, Nonlinear Anal. 3 (1979), 49-51.
MathSciNet
CrossRef
- M. K. Kinyon and A. A. Sagle, Differential
systems and algebras, in Differential equations, dynamical systems, and control science, Dekker NY, 1994,
115-141.
MathSciNet
- M. K. Kinyon and A. A. Sagle, Quadratic dynamical
systems and algebras, J. Differential Equations 117 (1995), 67-126.
MathSciNet
CrossRef
- Y. Krasnov, Properties of ODEs and PDEs in algebras,
Complex Anal. Oper. Theory 7 (2013), 623-634.
MathSciNet
CrossRef
- Y. Krasnov and I. Messika, Differential and integral equations in algebra, Funct. Differ. Equ. 21 (2014), 137-146.
MathSciNet
- M. Kutnjak and M. Mencinger, A family of completely
periodic quadratic discrete dynamical system, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 18 (2008), 1425-1433.
MathSciNet
CrossRef
- L. Lyagina, The integral curves of the equation y' = (ax2 + bxy + cy2)/(dx2 + exy +fy2), (Russian) Uspehi Matem. Nauk (N.S.) 6 (1951), 171-183.
MathSciNet
- L. Markus, Quadratic differential equations and non-associative algebras, in Contributions to the theory of nonlinear oscillations, 1960, 185-213.
MathSciNet
- N. Mehdi and M. Mohsen, Classification the integral curves of a second degree homogeneous ODE, Math. Sci. Q. J. 4 (2010), 371-381.
MathSciNet
- M. Mencinger, On stability of the origin in quadratic
systems of ODEs via Markus approach, Nonlinearity 16 (2003) 201-218.
MathSciNet
CrossRef
- M. Mencinger, Stability analysis of critical points in quadratic systems in ℝ3 which contain a plane of critical points, in Let's face
chaos through nonlinear dynamics (Maribor, 2002), Progr. Theoret. Phys. Suppl.
150 (2003), 388-392.
MathSciNet
CrossRef
- M. Mencinger, On stability of Riccati differential
equation X'=TX+Q(X) in ℝn, Proc. Edinb. Math. Soc. (2) 45
(2002), 601-615.
MathSciNet
CrossRef
- M. Mencinger and M.Kutnjak, The dynamics of
NQ-systems in the plane, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 19 (2009), 117-133.
MathSciNet
CrossRef
- M. Mencinger and B. Zalar, On stability of
critical points of quadratic differential equations in nonassociative
algebras, Glas. Mat. Ser. III 38(58) (2003), 19-27.
MathSciNet
CrossRef
- M. Mencinger, B. Zalar, A class of
nonassociative algebras arising from quadratic ODEs, Comm. Algebra. 33
(2005), 807-828.
MathSciNet
CrossRef
- H. C. Myung and A. A. Sagle, Quadratic differential
equations and algebras, Contemp. Math. 131, AMS, Providence, 1992, 659-672.
MathSciNet
CrossRef
- S. Walcher, Algebras and differential
equations, Hadronic Press, Inc., Palm Harbor, 1991.
MathSciNet
Glasnik Matematicki Home Page