Glasnik Matematicki, Vol. 53, No. 2 (2018), 275-330.
COMPUTING THE ASSOCIATED CYCLES OF CERTAIN HARISH-CHANDRA MODULES
Salah Mehdi, Pavle Pandžić, David Vogan and Roger Zierau
Institut Elie Cartan de Lorraine, CNRS - UMR 7502, Université de Lorraine, Metz, F-57045, France
e-mail: salah.mehdi@univ-lorraine.fr
Department of Mathematics, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
e-mail: pandzic@math.hr
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
e-mail: dav@math.mit.edu
Department of Mathematics, Oklahoma State University, Stillwater, Oklahoma 74078, USA
e-mail: roger.zierau@okstate.edu
Abstract.
Let Gℝ be a simple real linear Lie group with
maximal compact subgroup Kℝ and assume that rank(Gℝ)=rank(Kℝ). In [17] we proved that for any representation X of Gelfand-Kirillov dimension 1/2dim(Gℝ/Kℝ), the polynomial on the dual of a compact Cartan subalgebra given by the dimension of the Dirac index of members of the coherent family containing X is a linear combination, with integer coefficients, of the multiplicities of the irreducible components occurring in the associated cycle.
In this paper we compute these coefficients explicitly.
2010 Mathematics Subject Classification. 22E47, 22E46
Key words and phrases. (𝔤,K)-module, Dirac cohomology, Dirac index,
nilpotent orbit, associated variety,
associated cycle, Springer correspondence
Full text (PDF) (free access)
DOI: 10.3336/gm.53.2.05
References:
- D. Barbasch and P. Pandžić,
Dirac cohomology and unipotent representations of complex groups, in: Noncommutative Geometry and Global Analysis, eds. A. Connes, A. Gorokhovsky, M. Lesch, M. Pflaum, B. Rangipour, Contemporary Mathematics vol. 546, American Mathematical Society, 2011, pp. 1-22.
MathSciNet
CrossRef
- D. Barbasch and P. Pandžić,
Dirac cohomology of unipotent representations of Sp(2n,ℝ) and U(p,q), J. Lie Theory 25 (2015), 185-213.
MathSciNet
- D. Barbasch, P. Pandžić and P. Trapa,
Dirac index and twisted characters, Trans. Amer. Math. Soc. 371 (2019), 1701-1733.
CrossRef
- R. W. Carter, Finite groups of Lie type. Conjugacy classes and complex characters, Wiley Classics Library, John Wiley & Sons Ltd., Chichester, 1993.
MathSciNet
- D. H. Collingwood and W. M. McGovern,
Nilpotent orbits in semisimple Lie algebras,
Van Nostrand Reinhold Mathematics Series, Van Nostrand Reinhold Co., New York, 1993.
MathSciNet
- C.-P. Dong, J.-S. Huang, Dirac cohomology of cohomologically induced modules for reductive Lie groups, Amer. J. Math. 137 (2015), 37-60.
MathSciNet
CrossRef
- J.-S. Huang, Y.-F. Kang and P. Pandžić, Dirac
cohomology of some Harish-Chandra modules, Transform. Groups 14 (2009), 163-173.
MathSciNet
CrossRef
- J.-S. Huang and P. Pandžić,
Dirac cohomology, unitary representations and a proof of a
conjecture of Vogan, J. Amer. Math. Soc. 15 (2002), 185-202.
MathSciNet
CrossRef
- J.-S. Huang and P. Pandžić, Dirac
Operators in Representation Theory,
Mathematics: Theory and Applications, Birkhäuser, 2006.
MathSciNet
- J.-S. Huang, P. Pandžić and V. Protsak,
Dirac cohomology of Wallach representations, Pacific
J. Math. 250 (2011), 163-190.
MathSciNet
CrossRef
- J.-S. Huang, P. Pandžić and D. Renard,
Dirac operators and Lie algebra cohomology, Represent.
Theory 10 (2006), 299-313.
MathSciNet
CrossRef
- J.-S. Huang, P. Pandžić and F. Zhu,
Dirac cohomology, K-characters and branching laws, Amer. J. Math.
135 (2013), 1253-1269.
MathSciNet
CrossRef
- G. Lusztig, A class of irreducible
representations of a Weyl group.
Nederl. Akad. Wetensch. Indag. Math. 41 (1979), 323-335.
MathSciNet
- I. G. Macdonald, Some irreducible representations
of Weyl groups,
Bull. London Math. Soc. 4 (1972), 148-150.
MathSciNet
CrossRef
- S. Mehdi and P. Pandžić, Dirac
cohomology and translation functors, J. Algebra 375 (2013), 328-336.
Corrigendum, J. Algebra 451 (2016), 577-582.
MathSciNet
CrossRef
MathSciNet
CrossRef
- S. Mehdi, P. Pandžić and D. Vogan, Translation principle for Dirac index, Amer. J. Math. 139 (2017), 1465-1491.
MathSciNet
CrossRef
- S. Mehdi, P. Pandžić, D. Vogan and R. Zierau, Dirac index and associated cycles of Harish-Chandra modules, preprint, 2017, arXiv:1712.04169.
- S. Mehdi and R. Zierau, The Dirac cohomology of a finite dimensional representation, Proc. Amer. Math. Soc. 142 (2014),
1507-1512.
MathSciNet
CrossRef
-
P. Pandžić and P. Somberg, Higher Dirac cohomology of modules with generalized infinitesimal character,
Transform. Groups 21 (2016), 803-819.
MathSciNet
CrossRef
- R. Parthasarathy, Dirac operator and the discrete series,
Ann. of Math. 96 (1972), 1-30.
MathSciNet
CrossRef
- D. Vogan, Associated varieties and unipotent
representations, in: Harmonic analysis on reductive groups (Brunswick, ME, 1989), Progr. Math., vol. 101, Birkhäuser, Boston,
MA, 1991, pp. 315-388.
MathSciNet
- D. Vogan, Dirac operators and unitary representations.
3 talks at MIT Lie groups seminar, Fall 1997.
Glasnik Matematicki Home Page