Glasnik Matematicki, Vol. 53, No. 2 (2018), 275-330.

COMPUTING THE ASSOCIATED CYCLES OF CERTAIN HARISH-CHANDRA MODULES

Salah Mehdi, Pavle Pandžić, David Vogan and Roger Zierau

Institut Elie Cartan de Lorraine, CNRS - UMR 7502, Université de Lorraine, Metz, F-57045, France
e-mail: salah.mehdi@univ-lorraine.fr

Department of Mathematics, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
e-mail: pandzic@math.hr

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
e-mail: dav@math.mit.edu

Department of Mathematics, Oklahoma State University, Stillwater, Oklahoma 74078, USA
e-mail: roger.zierau@okstate.edu


Abstract.   Let G be a simple real linear Lie group with maximal compact subgroup K and assume that rank(G)=rank(K). In [17] we proved that for any representation X of Gelfand-Kirillov dimension 1/2dim(G/K), the polynomial on the dual of a compact Cartan subalgebra given by the dimension of the Dirac index of members of the coherent family containing X is a linear combination, with integer coefficients, of the multiplicities of the irreducible components occurring in the associated cycle. In this paper we compute these coefficients explicitly.

2010 Mathematics Subject Classification.   22E47, 22E46

Key words and phrases.   (𝔤,K)-module, Dirac cohomology, Dirac index, nilpotent orbit, associated variety, associated cycle, Springer correspondence


Full text (PDF) (free access)

DOI: 10.3336/gm.53.2.05


References:

  1. D. Barbasch and P. Pandžić, Dirac cohomology and unipotent representations of complex groups, in: Noncommutative Geometry and Global Analysis, eds. A. Connes, A. Gorokhovsky, M. Lesch, M. Pflaum, B. Rangipour, Contemporary Mathematics vol. 546, American Mathematical Society, 2011, pp. 1-22.
    MathSciNet     CrossRef

  2. D. Barbasch and P. Pandžić, Dirac cohomology of unipotent representations of Sp(2n,ℝ) and U(p,q), J. Lie Theory 25 (2015), 185-213.
    MathSciNet    

  3. D. Barbasch, P. Pandžić and P. Trapa, Dirac index and twisted characters, Trans. Amer. Math. Soc. 371 (2019), 1701-1733.
    CrossRef

  4. R. W. Carter, Finite groups of Lie type. Conjugacy classes and complex characters, Wiley Classics Library, John Wiley & Sons Ltd., Chichester, 1993.
    MathSciNet    

  5. D. H. Collingwood and W. M. McGovern, Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold Mathematics Series, Van Nostrand Reinhold Co., New York, 1993.
    MathSciNet    

  6. C.-P. Dong, J.-S. Huang, Dirac cohomology of cohomologically induced modules for reductive Lie groups, Amer. J. Math. 137 (2015), 37-60.
    MathSciNet     CrossRef

  7. J.-S. Huang, Y.-F. Kang and P. Pandžić, Dirac cohomology of some Harish-Chandra modules, Transform. Groups 14 (2009), 163-173.
    MathSciNet     CrossRef

  8. J.-S. Huang and P. Pandžić, Dirac cohomology, unitary representations and a proof of a conjecture of Vogan, J. Amer. Math. Soc. 15 (2002), 185-202.
    MathSciNet     CrossRef

  9. J.-S. Huang and P. Pandžić, Dirac Operators in Representation Theory, Mathematics: Theory and Applications, Birkhäuser, 2006.
    MathSciNet    

  10. J.-S. Huang, P. Pandžić and V. Protsak, Dirac cohomology of Wallach representations, Pacific J. Math. 250 (2011), 163-190.
    MathSciNet     CrossRef

  11. J.-S. Huang, P. Pandžić and D. Renard, Dirac operators and Lie algebra cohomology, Represent. Theory 10 (2006), 299-313.
    MathSciNet     CrossRef

  12. J.-S. Huang, P. Pandžić and F. Zhu, Dirac cohomology, K-characters and branching laws, Amer. J. Math. 135 (2013), 1253-1269.
    MathSciNet     CrossRef

  13. G. Lusztig, A class of irreducible representations of a Weyl group. Nederl. Akad. Wetensch. Indag. Math. 41 (1979), 323-335.
    MathSciNet    

  14. I. G. Macdonald, Some irreducible representations of Weyl groups, Bull. London Math. Soc. 4 (1972), 148-150.
    MathSciNet     CrossRef

  15. S. Mehdi and P. Pandžić, Dirac cohomology and translation functors, J. Algebra 375 (2013), 328-336. Corrigendum, J. Algebra 451 (2016), 577-582.
    MathSciNet     CrossRef
    MathSciNet     CrossRef

  16. S. Mehdi, P. Pandžić and D. Vogan, Translation principle for Dirac index, Amer. J. Math. 139 (2017), 1465-1491.
    MathSciNet     CrossRef

  17. S. Mehdi, P. Pandžić, D. Vogan and R. Zierau, Dirac index and associated cycles of Harish-Chandra modules, preprint, 2017, arXiv:1712.04169.

  18. S. Mehdi and R. Zierau, The Dirac cohomology of a finite dimensional representation, Proc. Amer. Math. Soc. 142 (2014), 1507-1512.
    MathSciNet     CrossRef

  19. P. Pandžić and P. Somberg, Higher Dirac cohomology of modules with generalized infinitesimal character, Transform. Groups 21 (2016), 803-819.
    MathSciNet     CrossRef

  20. R. Parthasarathy, Dirac operator and the discrete series, Ann. of Math. 96 (1972), 1-30.
    MathSciNet     CrossRef

  21. D. Vogan, Associated varieties and unipotent representations, in: Harmonic analysis on reductive groups (Brunswick, ME, 1989), Progr. Math., vol. 101, Birkhäuser, Boston, MA, 1991, pp. 315-388.
    MathSciNet    

  22. D. Vogan, Dirac operators and unitary representations. 3 talks at MIT Lie groups seminar, Fall 1997.

Glasnik Matematicki Home Page