Glasnik Matematicki, Vol. 53, No. 2 (2018), 265-273.
TRINOMIALS ax8+bx+c WITH GALOIS GROUPS OF ORDER 1344
Szabolcs Tengely
Institute of Mathematics, University of Debrecen, P.O.Box 12, 4010 Debrecen , Hungary
e-mail: tengely@science.unideb.hu
Abstract.
Bruin and Elkies ([7]) obtained the curve of genus 2 parametrizing trinomials ax8 + bx + c whose Galois group is contained in G1344 = (ℤ/2)3 ⋊ G168. They found some rational points of small height and computed the associated trinomials. They conjecture that the only ℚ-rational points of the hyperelliptic curve
Y2 = 2X6 + 28X5 + 196X4 + 784X3 + 1715X2 + 2058X + 2401
are given by (X, Y ) = (0, ± 49), (-1, ± 38), (-3, ± 32), and (-7, ± 196). In this paper we prove that the above points are the only S-integral points with S={2,3,5,7,11,13,17,19}.
2010 Mathematics Subject Classification. 11G30, 11Y50
Key words and phrases. Trinomials, hyperelliptic curves, S-integral points
Full text (PDF) (free access)
DOI: 10.3336/gm.53.2.04
References:
-
A. Baker, Bounds for the solutions of the hyperelliptic equation, Proc. Cambridge Philos. Soc., 65 (1969), 439-444.
MathSciNet
-
W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), 235-265.
MathSciNet
CrossRef
-
A. Bremner and B. K. Spearman, Cyclic sextic trinomials x6+Ax+B, Int. J. Number Theory 6 (2010), 161-167.
MathSciNet
CrossRef
-
B. Brindza, On S-integral solutions of the equation ym=f(x), Acta Math. Hungar. 44 (1984), 133-139.
MathSciNet
CrossRef
-
S. C. Brown, B. K. Spearman and Q. Yang, On the Galois groups of sextic trinomials, JP J. Algebra Number Theory Appl. 18 (2010), 67-77.
MathSciNet
-
S. C. Brown, B. K. Spearman and Q. Yang, On sextic trinomials with Galois group C6, S3 or C3× S3, J. Algebra Appl. 12 (2013), 1250128, 9 pp.
MathSciNet
CrossRef
-
N. Bruin and N. D. Elkies, Trinomials ax7+bx+c and ax8+bx+c with Galois groups of
order 168 and 8·168, Algorithmic number theory (Sydney, 2002), Lecture Notes in Comput. Sci. 2369, Springer, Berlin, 2002, 172-188.
MathSciNet
CrossRef
-
N. Bruin, Chabauty methods and covering techniques applied to generalized Fermat equations, Dissertation, University of Leiden, Leiden, 1999. CWI Tract 133, Stichting Mathematisch Centrum Centrum voor Wiskunde en Informatica, Amsterdam, 2002.
MathSciNet
-
N. Bruin, Chabauty methods using elliptic curves, J. Reine Angew. Math. 562 (2003) 27-49.
MathSciNet
CrossRef
-
Y. Bugeaud, Bounds for the solutions of superelliptic equations, Compositio Math. 107 (1997), 187-219.
MathSciNet
CrossRef
-
Y. Bugeaud, M. Mignotte, S. Siksek, M. Stoll, and Sz. Tengely, Integral points on hyperelliptic curves, Algebra Number Theory 2 (2008), 859-885.
MathSciNet
CrossRef
-
Y. Bugeaud, M. Mignotte, and S. Siksek, Classical and modular approaches to exponential Diophantine equations. I. Fibonacci and Lucas perfect powers, Ann. of Math. (2) 163 (2006), 969-1018.
MathSciNet
CrossRef
-
H. R. Gallegos-Ruiz, S-integral points on hyperelliptic curves, PhD thesis, University of Warwick, 2010.
-
H. R. Gallegos-Ruiz, S-integral points on hyperelliptic curves, Int. J. Number Theory 7 (2011), 803-824.
MathSciNet
CrossRef
-
E. Landau, Verallgemeinerung eines Pólyaschen satzes auf algebraische zahlkörper, 1918.
-
E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in
logarithms of algebraic numbers. II. Izv. Ross. Akad. Nauk Ser. Mat. 64 (2000), 125-180.
MathSciNet
CrossRef
-
A. Pethö and B. M. M. de Weger, Products of prime powers in binary recurrence sequences. I. The hyperbolic case, with an application to the generalized Ramanujan-Nagell
equation, Math. Comp. 47 (1986), 713-727.
MathSciNet
CrossRef
-
V. G. Sprindžuk,The arithmetic structure of integer polynomials and class numbers, Analytic number theory, mathematical analysis and their applications
(dedicated to I. M. Vinogradov on his 85th birthday), Trudy Mat. Inst. Steklov. 143 (1977), 152-174.
MathSciNet
-
M. Stoll, On the height constant for curves of genus two, Acta Arith. 90 (1999), 183-201.
MathSciNet
CrossRef
-
M. Stoll, Implementing 2-descent for Jacobians of hyperelliptic curves, Acta Arith. 98 (2001), 245-277.
MathSciNet
CrossRef
-
M. Stoll, On the height constant for curves of genus two. II, Acta Arith. 104 (2002), 165-182.
MathSciNet
CrossRef
-
P. M. Voutier,An upper bound for the size of integral solutions to Ym=f(X), J. Number Theory 53 (1995), 247-271.
MathSciNet
CrossRef
Glasnik Matematicki Home Page