Glasnik Matematicki, Vol. 53, No. 2 (2018), 229-238.

TOTALLY REAL THUE INEQUALITIES OVER IMAGINARY QUADRATIC FIELDS

István Gaál, Borka Jadrijević and László Remete

University of Debrecen, Mathematical Institute, H-4002 Debrecen Pf.400., Hungary
e-mail: gaal.istvan@unideb.hu

University of Split, Faculty of Science, Rudjera Boškovića 33, 21000 Split, Croatia
e-mail: borka@pmfst.hr

University of Debrecen, Mathematical Institute, H-4002 Debrecen Pf.400., Hungary
e-mail: remete.laszlo@science.unideb.hu


Abstract.   Let F(x,y) be an irreducible binary form of degree ≥ 3 with integer coefficients and with real roots. Let M be an imaginary quadratic field with ring of integers M. Let K>0. We describe an efficient method how to reduce the resolution of the relative Thue inequalities

|F(x,y)|≤ K   (x,yM)
to the resolution of absolute Thue inequalities of type
|F(x,y)|≤ k   (x,y ℤ).
We illustrate our method with an explicit example.

2010 Mathematics Subject Classification.   11D59, 11D57

Key words and phrases.   Relative Thue equations, Thue inequalities


Full text (PDF) (free access)

DOI: 10.3336/gm.53.2.02


References:

  1. A. Baker, Transcendental number theory, Cambridge University Press, Cambridge, 1990.
    MathSciNet    

  2. W. Bosma, J. Cannon and C. Playoust, The Magma algebra system.I. The user language, J. Symbolic Comput. 24 (1997), 235-265.
    MathSciNet     CrossRef

  3. B. W. Char, K. O. Geddes, G. H. Gonnet, M. B. Monagan, S. M. Watt, MAPLE, Reference Manual, Watcom Publications, Waterloo, Canada, 1988.

  4. M. Daberkow, C. Fieker, J. Klüners, M. Pohst, K.Roegner and K. Wildanger, KANT V4, Computational algebra and number theory, J. Symbolic Comput. 24 (1997), 267-283. http://www.math.tu-berlin.de/~kant/.
    MathSciNet     CrossRef

  5. I. Gaál, Computing elements of given index in totally complex cyclic sextic fields, J. Symbolic Comput. 20 (1995), 61-69.
    MathSciNet     CrossRef

  6. I. Gaál, Diophantine equations and power integral bases, Birkhäuser, Boston, 2002.
    MathSciNet    

  7. I. Gaál and M. Pohst, On the resolution of relative Thue equations, Math. Comput. 71 (2002), 429-440.
    MathSciNet     CrossRef

  8. S. V. Kotov and V. G. Sprindžuk, An effective analysis of the Thue-Mahler equation in relative fields (Russian), Dokl. Akad. Nauk. BSSR 17 (1973), 393-395, 477.
    MathSciNet    

  9. A. Pethő, On the resolution of Thue inequalities, J. Symbolic Comput. 4 (1987), 103-109.
    MathSciNet     CrossRef

  10. A. Thue, Über Annäherungswerte algebraischer Zahlen, J. Reine Angew. Math. 135 (1909), 284-305.
    MathSciNet     CrossRef

Glasnik Matematicki Home Page