Glasnik Matematicki, Vol. 53, No. 2 (2018), 221-228.

ON THE RAMANUJAN-NAGELL TYPE DIOPHANTINE EQUATION x2+Akn=B, II

Zhongfeng Zhang and Alain Togbé

School of Mathematics and Statistics, Zhaoqing University, Zhaoqing 526061, China
e-mail: bee2357@163.com

Department of Mathematics, Statistics, and Computer Science, Purdue University Northwest, 1401 S. U.S. 421 Westville, IN 46391
e-mail: atogbe@pnw.edu


Abstract.   Let A, B be positive integers and q a prime. In this paper, we prove that the Ramanujan-Nagell type Diophantine equation x2+Aqn=B has at most four nonnegative integer solutions (x, n) for q2∤ B and B≥ C where C is some constant depending of A. We also prove that the equation x2+3×2n=B has at most four nonnegative integer solutions (x, n). Therefore, we partially confirm a conjecture of Ulas ([4]).

2010 Mathematics Subject Classification.   11D41

Key words and phrases.   Diophantine equations


Full text (PDF) (free access)

DOI: 10.3336/gm.53.2.01


References:

  1. M. Bai and Z. Zhang, On the Ramanujan-Nagell type equation x2+2n=B, Journal of Southwest China Normal University (Natural Science Edition) 42 (6) (2017), 5-7.

  2. T. Nagell, The Diophantine equation x2+7=2n, Ark. Math. 4 (1961), 185-187.
    MathSciNet     CrossRef

  3. J. Stiller, The Diophantine equation x2 + 119 = 15 · 2n has exactly six solutions, Rocky Mountain J. Math. 26 (1996), 295-298.
    MathSciNet     CrossRef

  4. M. Ulas, Some experiments with Ramanujan-Nagell type Diophantine equations, Glas. Mat. Ser. III 49(69) (2014), 287-302.
    MathSciNet     CrossRef

  5. Z. Zhang and A. Togbé, On two Diophantine equations of Ramanujan-Nagell type, Glas. Mat. Ser. III 51(71) (2016), 17-22.
    MathSciNet     CrossRef

  6. Z. Zhang and A. Togbé, On the Ramanujan-Nagell type diophantine equation x2+Akn=B, Glas. Mat. Ser. III 53(73) (2018), 43-50.
    MathSciNet     CrossRef

Glasnik Matematicki Home Page