Glasnik Matematicki, Vol. 53, No. 1 (2018), 187-203.
ON APPROXIMATE LEFT φ-BIPROJECTIVE BANACH ALGEBRAS
Amir Sahami and Abdolrasoul Pourabbas
Department of Mathematics, Faculty of Basic Sciences, Ilam University, P.O. Box 69315-516 Ilam, Iran
e-mail: a.sahami@ilam.ac.ir
Faculty of Mathematics and Computer Science, Amirkabir University of Technology, 424 Hafez Avenue, 15914 Tehran, Iran
e-mail: arpabbas@aut.ac.ir
Abstract.
Let A be a Banach algebra. We introduce the
notions of approximate left φ-biprojective and approximate
left character biprojective Banach algebras, where φ is a non-zero
multiplicative linear functional on A. We show that for a SIN
group G, the Segal algebra S(G) is approximate left
φ1-biprojective if and only if G is amenable, where
φ1 is the augmentation character on S(G). Also we show
that the measure algebra M(G) is approximate left character
biprojective if and only if G is discrete and amenable. For a
Clifford semigroup S, we show that l1(S) is approximate
left character biprojective if and only if l1(S) is
pseudo-amenable. We study the hereditary property of these
notions. Finally we give some examples to show the differences of these notions
and the classical ones.
2010 Mathematics Subject Classification.
46M10, 43A07, 43A20.
Key words and phrases. Approximate left φ-biprojectivity, left
φ-amenability, Segal algebra, semigroup algebra, measure
algebra.
Full text (PDF) (free access)
DOI: 10.3336/gm.53.1.13
References:
- H. P. Aghababa, L. Y. Shi and Y. J. Wu, Generalized notions of character amenability, Acta Math. Sin. (Engl. Ser.) 29 (2013), 1329-1350.
MathSciNet
CrossRef
- M. Alaghmandan, R. Nasr Isfahani and M. Nemati, Character amenability and contractibility of abstract Segal algebras,
Bull. Aust. Math. Soc, 82 (2010), 274-281.
MathSciNet
CrossRef
- H. G. Dales and R. J. Loy, Approximate amenability of semigroup algebras and Segal algebras, Dissertationes
Math. (Rozprawy Mat.) 474 (2010), 58pp.
MathSciNet
CrossRef
- R. S. Doran and J. Whichman, Approximate identities and factorization in Banach modules, Lecture Notes in Mathematics. 768, Springer-Verlag, Berlin-New York, 1979.
MathSciNet
- M. Essmaili, M. Rostami and M. Amini, A characterization of biflatness of
Segal algebras based on a character, Glas. Mat. Ser. III 51(71) (2016), 45-58.
MathSciNet
CrossRef
- M. Essmaili, M. Rostami and A. Pourabbas, Pseudo-amenability of certain semigroup
algebras, Semigroup Forum 82 (2011), 478-484.
MathSciNet
CrossRef
-
F. Ghahramani and R. J. Loy, Generalized notions of amenability, J. Func. Anal. 208 (2004), 229-260.
MathSciNet
CrossRef
-
F. Ghahramani, R. J. Loy and Y. Zhang, Generalized notions of
amenability II, J. Func. Anal. 254 (2008), 1776-1810.
MathSciNet
CrossRef
- F. Ghahramani, Y. Zhang, Pseudo-amenable and pseudo-contractible Banach algebras, Math. Proc. Cambridge Philos. Soc. 142 (2007), 111-123.
MathSciNet
CrossRef
- A. Ya. Helemskii, The homology of Banach and topological
algebras, Kluwer Academic Publishers Group, Dordrecht, 1989.
MathSciNet
- E. Hewitt and K. A. Ross, Abstract harmonic analysis I, Springer-Verlag, Berlin-New York, 1963.
MathSciNet
- J. Howie, Fundamental of semigroup theory, London Math. Soc
Monographs, vol. 12. Clarendon Press, Oxford, 1995.
MathSciNet
- B. E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc. 127
(1972), 96 pp.
MathSciNet
- E. Kaniuth, A. T. Lau and J. Pym, On φ-amenability of Banach algebras, Math. Proc. Cambridge Philos. Soc. 144 (2008), 85-96.
MathSciNet
CrossRef
- E. Kotzmann and H. Rindler, Segal algebras on non-abelian groups, Trans. Amer.
Math. Soc. 237 (1978), 271-281.
MathSciNet
CrossRef
- R. Nasr Isfahani and M. Nemati, Character pseudo-amenability of Banach algebras, Colloq. Math. 132 (2013),
177-193.
MathSciNet
CrossRef
- A. Pourabbas and A. Sahami, On character biprojectivity of Banach algebras, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 78 (2016), 163-174.
MathSciNet
- H. Reiter, L1-algebras and Segal algebras, Lecture Notes in Mathematics 231, Springer, 1971.
MathSciNet
- P. Ramsden, Biflatness of semigroup algebras, Semigroup Forum 79 (2009), 515-530.
MathSciNet
CrossRef
- V. Runde, Lectures on amenability, Springer-Verlag, Berlin, 2002.
MathSciNet
- A. Sahami and A. Pourabbas, On φ-biflat and φ-biprojective Banach
algebras, Bull. Belg. Math. Soc. Simon Stevin 20 (2013), 789-801.
MathSciNet
CrossRef
- A. Sahami and A. Pourabbas, Approximate biprojectivity and φ-biflatness of some Banach algebras, Colloq. Math 145 (2016), 273-284.
MathSciNet
- A. Sahami and A. Pourabbas, Approximate biprojectivity of certain semigroup algebras, Semigroup Forum, 92 (2016), 474-485.
MathSciNet
CrossRef
- E. Samei, N. Spronk and R. Stokke, Biflatness and pseudo-amenability of Segal algebras, Canad.
J. Math. 62 (2010), 845-869.
MathSciNet
CrossRef
- M. Sangani Monfared, Character amenability of Banach
algebras, Math. Proc. Camb. Phil. Soc. 144 (2008), 697-706.
MathSciNet
CrossRef
- Y. Zhang, Nilpotent ideals in a class of Banach algebras, Proc. Amer. Math. Soc.
127 (1999), 3237-3242.
MathSciNet
CrossRef
Glasnik Matematicki Home Page