Glasnik Matematicki, Vol. 53, No. 1 (2018), 179-186.
GLOBALLY EXACT OPERATOR SPACES
Massoud Amini, Alireza Medghalchi and Hamed Nikpey
Department of Mathematics, Tarbiat Modares University, Tehran 14115-134, Iran
and School of Mathematics, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5746, Iran
e-mail: mamini@modares.ac.ir, mamini@ipm.ir
Department of Mathematics, Kharazmi University, 50 Taleghani Avenue, Tehran 15618, Iran
e-mail: a_medghalchi@khu.ac.ir
Department of Mathematics, Shahid Rajaei Teacher Training University, Tehran 16785-136, Iran
e-mail: hamednikpey@gmail.com
Abstract.
Exact operator spaces are known to be locally reflexive, but the converse is not true.
We introduce the notion of global exactness and show that it is equivalent to reflexivity for injective operator spaces.
2010 Mathematics Subject Classification.
46L07, 47L25.
Key words and phrases. Operator space, injective operator space, injective envelope, exact operator space, globally exact operator space, local reflexivity.
Full text (PDF) (free access)
DOI: 10.3336/gm.53.1.12
References:
- M. Amini, A. R. Medghalchi and H. Nikpey,
On tensor products of injective operator spaces, Houston J. Math. 43 (2017), 1147-1163.
MathSciNet
- R. Archbold and C. Batty, C*-tensor norms and slice maps, J. London Math. Soc. (2) 22 (1980), 127-138.
MathSciNet
CrossRef
- D. Blecher and C. Le Merdy, Operator algebras and their modules-an operator space approach,
London Mathematical Society Monographs, New Series 30, Oxford University Press, Oxford, 2004.
MathSciNet
CrossRef
- D. Blecher and V. I. Paulsen, Multipliers of operator spaces and the injective envelope,
Pacific J. Math. 200 (2001), 1-17.
MathSciNet
CrossRef
- J. B. Conway, A course in functional analysis, Springer-Verlag, Berlin, 1990.
MathSciNet
- Z. Dong and Z.-J. Ruan, Weak* exactness for dual operator spaces, J. Funct. Anal. 253 (2007), 373-397.
MathSciNet
CrossRef
- E. G. Effros and U. Haagerup, Lifting problems and local reflexivity for C*-algebras, Duke Math. J. 52 (1985), 103-128.
MathSciNet
CrossRef
- E. G. Effros, M. Junge and Z.-J. Ruan, Integral mappings and the principle of local reflexivity for noncommutative
L1-spaces, Ann. of Math. (2) 151 (2000), 59-92.
MathSciNet
CrossRef
- E. G. Effros, N. Ozawa and Z.-J. Ruan, On injectivity and nuclearity for operator spaces, Duke Math. J. 110 (2001),
489-521.
MathSciNet
CrossRef
- E. Effros and Z.-J. Ruan, Operator spaces, Oxford University Press, New York, 2000.
MathSciNet
- E. G. Effros and Z.-J. Ruan, On the abstract characterization of operator spaces,
Proc. Amer. Math. Soc. 119 (1993), 579-584.
MathSciNet
CrossRef
- U. Haagerup, Quasi traces on exact C*-algebra are traces, Math. Reports of the Academy of Science of the Royal Society of Canada, arXiv:1403.7653.
- M. Hamana, Injective envelopes of operator systems,
Publ. RIMS, Kyoto Univ. 15 (1979), 773-785.
MathSciNet
CrossRef
- M. Hamana, Injective envelopes of dynamical systems, in: Operator algebras and operator theory, Longman, Harlow, 1992, 69-77.
- E. Kirchberg, The Fubini theorem for exact C*-algebras, J. Operator Theory 10 (1983), 3-8.
MathSciNet
- E. Kirchberg, Exact C*-algebras, tensor products, and the classification of purely infinite algebras, in: Proceedings
of the International Congress of Mathematicians, vols. 1, 2, Zurich, 1994, Birkhäuser, Basel, 1995, 943-954.
MathSciNet
- E. Kirchberg, On subalgebras of the CAR-algebra, J. Funct. Anal. 129 (1995), 35-63.
MathSciNet
CrossRef
- A. R. Medghalchi and H. Nikpey,
Characterizing injective operator space V for which I11(V ) ≅ B(H),
Publ. Math. Debrecen 82 (2013), 21-30.
MathSciNet
CrossRef
- G. Pisier, Exact operator spaces, in: Recent advances in operator algebras, Orlèan, 1992, Astèrisque 232 (1995),
159-186.
MathSciNet
- G. Pisier, Introduction to operator space theory, Cambridge Univ. Press, Cambridge, 2003.
MathSciNet
CrossRef
- A. R. Robertson, Injective matricial Hilbert spaces, Math. Proc. Cambridge Philos. Soc. 110 (1991), 183-190.
MathSciNet
CrossRef
- A. G. Robertson and S. Wassermann, Completely bounded isomorphism of injective operator systems,
Bull. London Math. Soc. 21 (1989), 285-290.
MathSciNet
CrossRef
- H. Rosenthal, The complete separable extension property, J. Operator Theory 43 (2000), 329-374.
MathSciNet
- Z.-J. Ruan, Injectivity of operator spaces, Trans. Amer. Math. Soc. 315 (1989), 89-104.
MathSciNet
CrossRef
- R. R. Smith, Finite dimensional injective operator spaces, Proc. Amer. Math. Soc. 128 (2000), 3461-3462.
MathSciNet
CrossRef
- M. Takesaki, Theory of operator algebras. I, Springer, New York, 2002.
MathSciNet
- S. Wassermann, Exact C*-algebras and related topics, Seoul National University,
Seoul, 1994.
MathSciNet
- G. Wittstock, Extension of completely bounded C*-module homomorphisms, in: Operator algebras and group representations, Vol. II, Pitman, Boston, 1984, 238-250.
MathSciNet
Glasnik Matematicki Home Page