Glasnik Matematicki, Vol. 53, No. 1 (2018), 153-177.
SUMS OF MATRIX-VALUED WAVE PACKET FRAMES IN L2(ℝd,ℂs× r)
Jyoti, Deepshikha, Lalit K. Vashisht and Geetika Verma
Department of Mathematics, University of Delhi, Delhi-110007, India
e-mail: jyoti.sheoran3@gmail.com
e-mail: dpmmehra@gmail.com
e-mail: lalitkvashisht@gmail.com
Centre for Industrial and Applied Mathematics,
School of Information Technology and Mathematical Sciences,
University of South Australia, Adelaide, Australia
e-mail: Geetika.Verma@unisa.edu.au
Abstract.
The purpose of this paper is to first show relations between wave packet frame bounds and the scalars associated with finite sum of matrix-valued wave packet frames for the matrix-valued function space L2(ℝd, ℂs× r). A sufficient condition with explicit wave packet frame bounds for finite sum of matrix-valued wave packet frames in terms of scalars and frame bounds associated with the finite sum of frames is given. An optimal estimate of wave packet frame bounds for the finite sum of matrix-valued wave packet frames is presented. In the second part, we show that the rate of convergence of the frame algorithm can be increased by using frame bounds and scalars associated with the finite sum of frames. Finally, a necessary and sufficient condition for finite sum of matrix-valued wave packet frames in terms of series associated with wave packet vectors is given.
2010 Mathematics Subject Classification.
42C15, 42C30, 42C40.
Key words and phrases. Bessel sequence, frames, wave packet frames.
Full text (PDF) (free access)
DOI: 10.3336/gm.53.1.11
References:
-
P. G. Casazza and G. Kutyniok, Finite frames. Theory and applications, Birkhäuser, 2013.
MathSciNet
CrossRef
-
P. G. Casazza, The art of frame theory, Taiwanese J. Math. 4 (2000), 129-201.
MathSciNet
CrossRef
-
P. G. Casazza and R. G. Lynch, A brief introduction to Hilbert space frame theory and its
applications, in Finite frame theory, AMS, 2016, 1-51.
MathSciNet
-
O. Christensen, An introduction to frames and Riesz bases, Birkhäuser, 2016.
MathSciNet
CrossRef
-
O. Christensen and A. Rahimi, Frame properties of wave packet systems in L2(ℝd), Adv. Comput. Math. 29 (2008), 101-111.
MathSciNet
CrossRef
-
A. Córdoba and C. Fefferman, Wave packets and Fourier integral
operators, Comm. Partial Differential Equations 3 (1978),
979-1005.
MathSciNet
CrossRef
-
W. Czaja, G. Kutyniok and D. Speegle, The geometry of sets of
parameters of wave packets, Appl. Comput. Harmon. Anal. 20
(2006), 108-125.
MathSciNet
CrossRef
-
I. Daubechies, A. Grossmann and Y. Meyer, Painless nonorthogonal expansions,
J. Math. Phys. 27 (1986), 1271-1283.
MathSciNet
CrossRef
-
I. Daubechies, Ten lectures on wavelets, SIAM, Philadelphia, 1992.
MathSciNet
CrossRef
-
Deepshikha and L. K. Vashisht, Extension of Weyl-Heisenberg wave packet Bessel sequences to dual frames in L2(ℝ), J. Class. Anal. 8 (2016), 131-145.
MathSciNet
-
Deepshikha and L. K. Vashisht, A note on discrete frames of translates in ℂN, TWMS J. Appl. Eng. Math. 6 (2016), 143-149.
MathSciNet
-
Deepshikha and L. K. Vashisht, Necessary and sufficient conditions for
discrete wavelet frames in ℂN, J. Geom. Phys. 117 (2017), 134-143.
MathSciNet
CrossRef
-
Deepshikha and L. K. Vashisht, Extension of Bessel sequences to dual frames in Hilbert spaces, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 79 (2017), 71-82.
MathSciNet
-
R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math.
Soc. 72 (1952), 341-366.
MathSciNet
CrossRef
-
Dao-Xin Ding, Generalized continuous frames constructed by using an iterated function system, J. Geom.
Phys. 61 (2011), 1045-1050.
MathSciNet
CrossRef
-
K. Guo and D. Labate, Some remarks on the unified characterization of reproducing systems, Collect. Math. 57 (2006), 295-307.
MathSciNet
-
C. Heil, A basis theory primer, Expanded edition, Birkhäuser, 2011.
MathSciNet
CrossRef
-
E. Hernández, D. Labate and G. Weiss, A unified characterization of reproducing systems generated
by a finite family II, J. Geom. Anal. 12 (2002), 615-662.
MathSciNet
CrossRef
-
E. Hernández, D. Labate, G. Weiss and E. Wilson,
Oversampling, quasi-affine frames, and wave packets, Appl. Comput. Harmon. Anal. 16 (2004), 111-147.
MathSciNet
CrossRef
-
Jyoti, Deepshikha, L. K. Vashisht and G. Verma, Matrix-valued wave packet frames in L2(ℝd, ℂs× r), Preprint.
-
J. R. Holub, On a property of bases in a Hilbert space, Glasg. Math. J. 46 (2004), 177-180.
MathSciNet
CrossRef
-
S. K. Kaushik, G. Singh and Virender, On WH packets in L2(ℝ), Commun. Math. Appl. 3 (2012), 333-344.
-
D. Labate, G. Weiss and E. Wilson, An approach to the study of wave
packet systems, in Wavelets, frames and operator theory, Contemp. Math. 345, 2004, 215-235.
MathSciNet
CrossRef
-
M. Lacey and C. Thiele, Lp estimates on the bilinear Hilbert transform for 2 < p < ∞, Ann. of Math. (2) 146 (1997), 693-724.
MathSciNet
CrossRef
-
M. Lacey and C. Thiele, On Calderón's conjecture, Ann. Math. 149 (1999), 475-496.
MathSciNet
CrossRef
-
S. Obeidat, S. Samarah, P. G. Casazza and J. C. Tremain, Sums of Hilbert space frames, J. Math. Anal. Appl. 351 (2009), 579-585.
MathSciNet
CrossRef
-
K. Thirulogasanthar and W. Bahsoun, Frames built on fractal sets, J. Geom. Phys. 50 (2004), 79-98.
MathSciNet
CrossRef
-
L. K. Vashisht and Deepshikha, Weaving properties of generalized continuous frames generated by an iterated
function system, J. Geom. Phys. 110 (2016), 282-295.
MathSciNet
CrossRef
-
S. Zhang and A. Vourdas, Analytic representation of finite quantum systems, J. Phys. A 37 (2004), 8349-8363.
MathSciNet
CrossRef
Glasnik Matematicki Home Page