Glasnik Matematicki, Vol. 53, No. 1 (2018), 123-141.
EXISTENCE AND BOUNDEDNESS OF SOLUTIONS FOR SYSTEMS OF DIFFERENCE
EQUATIONS WITH INFINITE DELAY
Juan J. Nieto, Abdelghani Ouahab and
Mohammed A. Slimani
Instituto de Matemáticas,
Facultade de Matemáticas, Universidade de Santiago de Compostela, Santiago de
Compostela, 15782,
Spain
e-mail: juanjose.nieto.roig@usc.es
Laboratory of Mathematics,
University of Sidi Bel-Abbès, P.O. Box 89, 22000 Sidi Bel-Abbès,
Algeria
e-mail: agh_ouahab@yahoo.fr
Laboratory of Mathematics, University of Sidi
Bel-Abbès, P.O. Box 89, 22000 Sidi Bel-Abbès, Algeria
e-mail: sedikslimani@yahoo.fr
Abstract.
In this work we first establish some existence results followed by boundedness behavior and asymptotic behavior of solutions for systems of difference equations with infinite delay. Our approach is based on a Perov fixed point theorem in vector metric space. We apply our results to a system of Volterra difference equations.
2010 Mathematics Subject Classification.
34K45, 34A60.
Key words and phrases. Difference equations, fixed point, infinite delay, boundedness, asymptotic behavior, matrix convergent to zero.
Full text (PDF) (free access)
DOI: 10.3336/gm.53.1.09
References:
- R. P. Agarwal, Difference equations and inequalities. Theory, methods and applications, Marcel
Dekker, Inc., New York, 1992.
MathSciNet
- R. P. Agarwal, C. Cuevas and M. Frasson, Semilinear functional difference
equations with infinite delay, Math. Comput. Modelling 55 (2012), 1083-1105.
MathSciNet
CrossRef
- R. P. Agarwal, D. O'Regan and P. J. Y. Wong, Constant-sign periodic and almost periodic solutions of a system of difference equations, Comput. Math. Appl. 50 (2005), 1725-1754.
MathSciNet
CrossRef
- R. P. Agarwal and J. Popenda, Periodic solutions of first order linear difference equations, Math. Comput. Modelling 22 (1995), 11-19.
MathSciNet
CrossRef
- R. P. Agarwal and P. J. Y. Wong,
Advanced topics in difference equations, Kluwer Academic Publishers Group,
Dordrecht, 1997.
MathSciNet
CrossRef
- W. Arendt, Semigroups and evolution equations:
functional calculus, regularity and kernel estimates, in Evolutionary equations. Vol. I, North-Holland,
Amsterdam, 2004, 1-85.
MathSciNet
- C. T. H Baker and Y. Song, Periodic solutions of discrete Volterra equations, Math. Comput. Simulation 64 (2004), 521-542.
MathSciNet
CrossRef
- S. Blunck, Analyticity and discrete maximal
regularity on Lp-spaces, J. Funct. Anal. 183 (2001),
211-230.
MathSciNet
CrossRef
- S. Blunck, Maximal regularity of discrete and continuous time
evolution equations, Studia Math. 146 (2001), 157-176.
MathSciNet
CrossRef
- A. Caicedo, C. Cuevas, G. M. Mophou, and G. M. N'Guérékata, Asymptotic behavior of solutions of some semilinear functional differential and integro-differential equations with infinite delay in Banach spaces, J. Franklin Inst. 349 (2012), 1-24.
MathSciNet
CrossRef
- F. Cardoso and C. Cuevas, Exponential dichotomy and boundedness for retarded
functional difference equations, J. Difference Equ. Appl. 15 (2009), 261-290.
MathSciNet
CrossRef
- C. Corduneanu, Almost periodic discrete processes, Libertas Math. 2 (1982), 159-169.
MathSciNet
- C. Cuevas, Weighted convergent and
bounded solutions of Volterra difference systems with infinite
delay, J. Differ. Equations Appl. 6 (2000), 461-480.
MathSciNet
CrossRef
- C. Cuevas and L. Del Campo, An asymptotic theory for retarded
functional difference equations, Comput. Math. Appl. 49 (2005), 841-855.
MathSciNet
CrossRef
- C. Cuevas and M. Pinto, Convergent solutions of linear functional difference
equations in phase space, J. Math. Anal. Appl. 277 (2003), 324-341.
MathSciNet
CrossRef
- C. Cuevas, and C. Vidal, Discrete
dichotomies and asymptotic behavior for abstract retarded functional
difference equations in phase space, J. Difference Equ. Appl. 8 (2002), 603-640.
MathSciNet
CrossRef
- C. Cuevas and C. Vidal, A note
on discrete maximal regularity for functional difference equations
with infinite delay, Adv. Difference Equ. (2006), Art. 97614,
1-11.
MathSciNet
- B. De Andrade and C. Cuevas, S-asymptotically ω-periodic and
asymptotically ω-periodic solutions to semi-linear Cauchy
problems with non-dense domain, Nonlinear Anal. 72 (2010),
3190-3208.
MathSciNet
CrossRef
- L. Del Campo, M. Pinto and C. Vidal, Almost and
asymptotically almost periodic solutions of abstract retarded
functional difference equations in phase space, J. Difference
Equ. Appl. 17 (2011), 915-934.
MathSciNet
CrossRef
- S. Elaydi, S. Murakami and
E. Kamiyama, Asymptotic equivalence for difference equations with
infinite delay, J. Differ. Equations Appl. 5 (1999), 1-23.
MathSciNet
CrossRef
- A. Halanay, Solutions
périodiques et presque-périodiques des systèmes d'équations aux
differences finies, Arch. Rational Mech. Anal. 12 (1963),
134-149.
MathSciNet
CrossRef
- Y. Hamaya, Existence of an almost periodic
solution in a difference equation with infinite delay, J.
Difference Equ. Appl. 9 (2003), 227-237.
MathSciNet
CrossRef
- H. R. Henríquez, M. Pierri and P. Táboas, On S-asymptotically
ω-periodic functions on Banach spaces and applications, J.
Math. Anal. Appl. 343 (2008), 1119-1130.
MathSciNet
CrossRef
- H. Matsunaga and S. Murakami, Some invariant manifolds for
functional difference equations with infinite delay, J.
Difference Equ. Appl. 10 (2004), 661-689.
MathSciNet
CrossRef
- H. Matsunaga and S. Murakami, Asymptotic behavior of solutions of functional
difference equations, J.Math. Anal. Appl. 305 (2005), 391-410.
MathSciNet
CrossRef
- S. Murakami, Representation of solutions of linear functional difference equations in phase space, in Proceedings of the Second World Congress of Nonlinear Analysts, Part
2 (Athens, 1996), Nonlinear Anal. 30 (1997), 1153-1164.
MathSciNet
CrossRef
- A. I. Perov, On the Cauchy problem for a system of
ordinary differential equations, Pvibliž. Metod. Rešen
Differencial. Uvavnen. Vyp. 2 (1964), 115-134 (in Russian).
MathSciNet
- Y. Song, Periodic and almost periodic solutions of functional difference equations with finite delay, Adv. Difference Equ. (2007), Art. ID 68023, 15 pp.
MathSciNet
- Y. Song, Asymptotically almost periodic solutions of nonlinear Volterra
difference equations with unbounded delay, J. Difference Equ.
Appl. 14 (2008), 971-986.
MathSciNet
CrossRef
- Y. Song, Positive almost
periodic solutions of nonlinear discrete systems with finite delay,
Comput. Math. Appl. 58 (2009), 128-134.
MathSciNet
CrossRef
- S. Sugiyama, On periodic solutions of difference equations, Bull. Sci. Engrg. Res. Lab. Waseda Univ. 52 (1971), 89-94.
- R. S. Varga, Matrix iterative analysis, Springer-Verlag, Berlin, 2000.
MathSciNet
CrossRef
- C. Vidal, Existence of periodic and almost
periodic solutions of abstract retarded functional difference
equations in phase spaces, Adv. Difference Equ. (2009), Art.
ID 380568, 19 pp.
MathSciNet
Glasnik Matematicki Home Page