Glasnik Matematicki, Vol. 53, No. 1 (2018), 97-113.

COMMUTATIVE OPERATORS FOR DOUBLE YANGIAN DY()

Slaven Kožić

Department of Mathematics, Faculty of Science, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, Croatia
e-mail: kslaven@math.hr

Abstract.   We derive explicit formulae for certain commutative vertex operators associated with Iohara's realization of the level 1 DY()-modules. As an application, we construct combinatorial bases for the corresponding principal subspaces and recover the classical character formulae. In the end, we discuss the underlying nonlocal vertex algebra theory.

2010 Mathematics Subject Classification.   17B37, 17B69.

Key words and phrases.   Combinatorial basis, double Yangian, principal subspace, quantum vertex algebra.


Full text (PDF) (free access)

DOI: 10.3336/gm.53.1.07


References:

  1. M. Butorac, Combinatorial bases of principal subspaces for the affine Lie algebra of type B2(1), J. Pure Appl. Algebra 218 (2014), 424-447.
    MathSciNet     CrossRef

  2. M. Butorac, Quasi-particle bases of principal subspaces for the affine Lie algebras of types Bl(1) and Cl(1), Glas. Mat. Ser. III 51(71) (2016), 59-108.
    MathSciNet     CrossRef

  3. M. Butorac, Quasi-particle bases of principal subspaces for the affine Lie algebra of type G2(1), Glas. Mat. Ser. III 52(72) (2017), 79-98.
    MathSciNet     CrossRef

  4. C. Calinescu, J. Lepowsky and A. Milas, Vertex-algebraic structure of the principal subspaces of certain A(1)1-modules, I: level one case, Internat. J. Math. 19, no. 01 (2008), 71-92.
    MathSciNet     CrossRef

  5. J. Ding and B. Feigin, Commutative quantum current operators, semi-infinite construction and functional models, Represent. Theory 4 (2000), 330-341.
    MathSciNet     CrossRef

  6. V. G. Drinfeld, Quantum groups, in: Proc. ICM Berkley (1986), American Mathematical Society, Providence, 1987, 798-820.

  7. B. Enriquez and G. Felder, A construction of Hopf algebra cocycles for the Yangian double DY(), J. Phys. A: Math. Gen. 31 (1998), 2401-2413.
    MathSciNet     CrossRef

  8. P. Etingof and D. Kazhdan, Quantization of Lie bialgebras. V. Quantum vertex operator algebras, Selecta Math. (N.S.) 6 (2000), 105-130.
    MathSciNet     CrossRef

  9. A. V. Stoyanovsky and B. L. Feigin, Functional models of the representations of current algebras, and semi-infinite Schubert cells, Funktsional. Anal. i Prilozhen. 28 (1994), 68-90, 96; translation in Funct. Anal. Appl. 28 (1994), 55-72.
    MathSciNet     CrossRef

  10. I. B. Frenkel and N. Jing, Vertex representations of quantum affine algebras, Proc. Natl. Acad. Sci. U.S.A. 85 (1988), 9373-9377.
    CrossRef
    MathSciNet    

  11. G. Georgiev, Combinatorial constructions of modules for infinite-dimensional Lie algebras, I. Principal subspace, J. Pure Appl. Algebra 112 (1996), 247-286.
    MathSciNet     CrossRef

  12. K. Iohara, Bosonic representations of Yangian double DYh() with =,, J. Phys. A 29 (1996), 4593-4621.
    MathSciNet     CrossRef

  13. C. Kassel, Quantum Groups, Springer-Verlag, New York, 1995.
    MathSciNet     CrossRef

  14. K. Kawasetsu, The free generalized vertex algebras and generalized principal subspaces, J. Algebra 444 (2015), 20-51.
    MathSciNet     CrossRef

  15. S. M. Khoroshkin and V. N. Tolstoy, Yangian double, Lett. Math. Phys. 36 (1996), 373-402.
    MathSciNet     CrossRef

  16. S. Kožić, Principal subspaces for double Yangian DY(), J. Lie Theory 28 (2018), 673-694.
    MathSciNet    

  17. J. Lepowsky and M. Primc, Structure of the standard modules for the affine Lie algebra A1(1), Contemp. Math. 46, Amer. Math. Soc., Providence, 1985.
    MathSciNet     CrossRef

  18. H.-S. Li, Modules-at-infinity for quantum vertex algebras, Commun. Math. Phys. 282 (2008), 819-864.
    MathSciNet     CrossRef

  19. H.-S. Li, -adic quantum vertex algebras and their modules, Commun. Math. Phys. 296 (2010), 475-523.
    MathSciNet     CrossRef

  20. M. Primc, Vertex operator construction of standard modules for An(1), Pacific J. Math 162 (1994), 143-187.
    MathSciNet     CrossRef

  21. M. Primc, Basic Representations for classical affine Lie algebras, J. Algebra 228 (2000), 1-50.
    MathSciNet     CrossRef

  22. C. Sadowski, Presentations of the principal subspaces of the higher-level standard -modules, J. Pure Appl. Algebra 219 (2015) 2300-2345.
    MathSciNet     CrossRef

Glasnik Matematicki Home Page