Glasnik Matematicki, Vol. 53, No. 1 (2018), 51-71.

A COMBINATORIAL INTERPRETATION OF THE LDU-DECOMPOSITION OF TOTALLY POSITIVE MATRICES AND THEIR INVERSES

Muhammad ElGebali and Nermine El-Sissi

Mathematics and Actuarial Science Department, The American University in Cairo, 11 853 Cairo, Egypt
e-mail: m.elgebali@aucegypt.edu
e-mail: nelsissi@aucegypt.edu

Abstract.   We study the combinatorial description of the LDU-decomposition of totally positive matrices. We give a description of the lower triangular L, the diagonal D, and the upper triangular U matrices of the LDU-decomposition of totally positive matrices in terms of the combinatorial structure of essential planar networks described by Fomin and Zelevinsky [5]. Similarly, we find a combinatorial description of the inverses of these matrices. In addition, we provide recursive formulae for computing the L, D, and U matrices of a totally positive matrix.

2010 Mathematics Subject Classification.   15A23, 05C50.

Key words and phrases.   Totally positive matrices, LDU factorization, planar networks.


Full text (PDF) (free access)

DOI: 10.3336/gm.53.1.05


References:

  1. T. Ando, Totally positive matrices, Linear Algebra Appl. 90 (1987), 165-219.
    MathSciNet     CrossRef

  2. R. Cantó, P. Koev, B. Ricarte, and A. M. Urbano, LDU factorization of nonsingular totally nonpositive matrices, SIAM J. Matrix Anal. Appl. 167 (2008), 777-782.
    MathSciNet     CrossRef

  3. C. W. Cryer, The LU-factorization of totally positive matrices, Linear Algebra and Appl. 7 (1973), 83-92.
    MathSciNet    

  4. S. M. Fallat and C. R. Johnson, Totally nonnegative matrices, Princeton University Press, Princeton, 2011.
    MathSciNet     CrossRef

  5. S. Fomin and A. Zelevinsky, Total positivity: tests and parametrizations, Math. Intelligencer 22 (2000), 23-33.
    MathSciNet     CrossRef

  6. F. R. Gantmacher and M. G. Krein, Sur les matrices complètement non négatives et oscillatoires, Compositio Math. 4 (1937), 445-476.

  7. F. R. Gantmacher, The theory of matrices, Chelsea, New York, 1959.
    MathSciNet    

  8. M. Gasca and C. A. Micchelli, Eds., Total positivity and its applications, Mathematics and its Applications 359, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996.
    MathSciNet    

  9. M. Gasca and J. M. Peña, On factorizations of totally positive matrices, in Total positivity and its applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996, 109-130.

  10. S. Karlin, Total positivity, Stanford University Press, Stanford, 1968.
    MathSciNet    

Glasnik Matematicki Home Page