Glasnik Matematicki, Vol. 53, No. 1 (2018), 33-42.
STRONG EULERIAN TRIPLES
Andrej Dujella, Ivica Gusić, Vinko Petričević and Petra Tadić
Department of Mathematics,
University of Zagreb,
Bijenička cesta 30, 10000 Zagreb,
Croatia
e-mail: duje@math.hr
Faculty of Chemical Engineering and Technology ,
University of Zagreb ,
Marulićev trg 19, 10000 Zagreb,
Croatia
e-mail: igusic@fkit.hr
Department of Mathematics,
University of Zagreb,
Bijenička cesta 30, 10000 Zagreb,
Croatia
e-mail: vpetrice@math.hr
Department of Economics and Tourism ,
Juraj Dobrila University of Pula ,
52100 Pula,
Croatia
e-mail: ptadic@unipu.hr
Abstract.
We prove that there exist infinitely many rationals a, b and c with the property that
a2-1, b2-1, c2-1, ab-1, ac-1 and bc-1 are all perfect squares. This provides a solution
to a variant of the problem studied by Diophantus and Euler.
2010 Mathematics Subject Classification.
11D09, 11G05.
Key words and phrases. Eulerian triples, elliptic curves.
Full text (PDF) (free access)
DOI: 10.3336/gm.53.1.03
References:
-
N. Adžaga, A. Dujella, D. Kreso and P. Tadić, Triples which are D(n)-sets for several n's,
J. Number Theory 184 (2018), 330-341.
MathSciNet
CrossRef
- J. Cremona, Algorithms for modular elliptic curves, Cambridge University Press, Cambridge, 1997.
MathSciNet
-
L. E. Dickson,
History of the theory of numbers, Vol. 2, Chelsea, New York, 1966,
pp. 513-520.
MathSciNet
-
A. Dujella, An extension of an old problem of Diophantus and Euler,
Fibonacci Quart. 37 (1999), 312-314.
MathSciNet
-
A. Dujella, A note on Diophantine quintuples, in: Algebraic number theory and Diophantine analysis
(F. Halter-Koch, R. F. Tichy, eds.), Walter de Gruyter, Berlin, 2000, pp. 123-127.
MathSciNet
-
A. Dujella, An extension of an old problem of Diophantus and Euler. II,
Fibonacci Quart. 40 (2002), 118-123.
MathSciNet
-
A. Dujella, On Mordell-Weil groups of elliptic curves induced by Diophantine triples,
Glas. Mat. Ser. III 42(62) (2007), 3-18.
MathSciNet
CrossRef
-
A. Dujella, What is ... a Diophantine m-tuple?, Notices Amer. Math. Soc. 63 (2016), 772-774.
MathSciNet
CrossRef
-
A. Dujella, A. Filipin and C. Fuchs, Effective solution of the D(-1)-quadruple conjecture,
Acta Arith. 128 (2007), 319-338.
MathSciNet
CrossRef
-
A. Dujella and C. Fuchs, Complete solution of a problem of Diophantus and Euler,
J. London Math. Soc. 71 (2005), 33-52.
MathSciNet
CrossRef
-
A. Dujella and C. Fuchs, On a problem of Diophantus for rationals,
J. Number Theory 132 (2012), 2075-2083.
MathSciNet
CrossRef
-
A Dujella, I. Gusić and P. Tadić, The rank and generators of Kihara's elliptic curve
with torsion ℤ/4ℤ over ℚ(t),
Proc. Japan Acad. Ser. A Math. Sci. 91 (2015), 105-109.
MathSciNet
CrossRef
-
A. Dujella and M. Kazalicki, More on Diophantine sextuples, in: Number theory - Diophantine problems, uniform distribution and applications, Festschrift in honour of Robert F. Tichy's 60th birthday (C. Elsholtz, P. Grabner, Eds.), Springer-Verlag, Berlin, 2017, pp. 227-235.
MathSciNet
-
A. Dujella, M. Kazalicki, M. Mikić and M. Szikszai, There are infinitely many rational
Diophantine sextuples, Int. Math. Res. Not. IMRN 2017 (2) (2017), 490-508.
MathSciNet
CrossRef
-
A. Dujella and J. C. Peral, Elliptic curves with torsion group
ℤ/8ℤ or ℤ/2ℤ × ℤ/6ℤ, in: Trends in number theory, Contemp. Math. 649 (2015), 47-62.
MathSciNet
-
A Dujella, J. C. Peral and P. Tadić, Elliptic curves with torsion group
ℤ/6ℤ, Glas. Mat. Ser. III 51(71) (2016), 321-333.
MathSciNet
CrossRef
-
A. Dujella and V. Petričević, Strong Diophantine triples,
Experiment. Math. 17 (2008), 83-89.
MathSciNet
CrossRef
-
P. Gibbs, Some rational Diophantine sextuples, Glas. Mat. Ser. III 41(61) (2006), 195-203.
MathSciNet
CrossRef
-
P. Gibbs, A survey of rational Diophantine sextuples of low height, preprint, 2016.
-
I. Gusić and P. Tadić, A remark on the injectivity of the specialization homomorphism,
Glas. Mat. Ser. III 47(67) (2012), 265-275.
MathSciNet
CrossRef
-
I. Gusić and P. Tadić, Injectivity of the specialization homomorphism
of elliptic curves, J. Number Theory 148 (2015), 137-152.
MathSciNet
CrossRef
-
T. L. Heath,
Diophantus of Alexandria. A study of the history of Greek algebra,
With a supplement containing an account of Fermat's theorems and
problems connected with Diophantine analysis and some solutions of
Diophantine problems by Euler (Cambridge, 1910), Powell's Bookstore, Chicago;
Martino Publishing, Mansfield Center, 2003, pp. 177-181.
MathSciNet
-
A. J. MacLeod, Square Eulerian quadruples,
Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. 20 (2016), 1-7.
MathSciNet
-
B. Mazur, Rational isogenies of prime degree,
Invent. Math. 44 (1978), 129-162.
MathSciNet
CrossRef
-
J. H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Springer-Verlag,
New York, 1994.
MathSciNet
CrossRef
-
M. Stoll, Diagonal genus 5 curves, elliptic curves over ℚ(t), and rational diophantine quintuples, preprint, 2017.
Glasnik Matematicki Home Page