Glasnik Matematicki, Vol. 53, No. 1 (2018), 9-31.
SOME RESULTS ON q-HERMITE BASED HYBRID POLYNOMIALS
Mumtaz Riyasat and Subuhi Khan
Department of Mathematics, Faculty of Science, Aligarh Muslim University, Aligarh, India
e-mail: mumtazrst@gmail.com
e-mail: subuhi2006@gmail.com
Abstract.
In this article, a hybrid class of the q-Hermite based Apostol type Frobenius-Euler polynomials is introduced by means of generating function and series representation. Several important formulas and recurrence relations for these polynomials are derived via different generating function methods. Further, the 2D q-Hermite based Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials are introduced and important relations for these polynomials are also established. Finally, a new class of the 2D q-Hermite based Appell polynomials is investigated as the generalization of the above polynomials. The determinant definitions for the 2D q-Hermite based Appell and related polynomials are also explored.
2010 Mathematics Subject Classification.
11B73, 11B83, 11B68.
Key words and phrases. q-Hermite type polynomials, Apostol type q-Frobenius-Euler polynomials, q-Hermite based Apostol type Frobenius-Euler polynomials.
Full text (PDF) (free access)
DOI: 10.3336/gm.53.1.02
References:
- W. A. Al-Salam, q-Appell polynomials, Ann. Mat. Pura Appl. (4) 17 (1967), 31-45.
MathSciNet
CrossRef
- G. E. Andrews, R. Askey and R. Roy, Special functions,
Cambridge University Press, Cambridge, 1999.
MathSciNet
CrossRef
- L. Carlitz, Eulerian numbers and polynomials, Math. Mag. 32 (1958/1959), 247-260.
MathSciNet
CrossRef
- Gi-Sang Cheon and Ji-Hwan Jung, The q-Sheffer sequences of a new type and associated orthogonal polynomials, Linear Algebra Appl. 491 (2016), 171-186.
MathSciNet
CrossRef
- J. Choi, P. J. Anderson and H. M. Srivastava, Some q-extensions of the Apostol-Bernoulli and the Apostol-Euler polynomials of order n, and the multiple Hurwitz zeta function, Appl. Math. Comput. 199 (2008), 723-727.
MathSciNet
CrossRef
- J. Choi, P. J. Anderson and H. M. Srivastava, Carlitz's q-Bernoulli and q-Euler numbers and polynomials and a class of generalized q-Hurwitz zeta functions, Appl. Math. Comput. 215 (2009), 1185-1208.
MathSciNet
CrossRef
- R. Dere, Y. Simsek and H. M. Srivastava, Unified presentation of three families of generalized Apostol type polynomials based
upon the theory of the umbral calculus and the umbral algebra, J. Number Theory 133 (2013), 3245-3263.
MathSciNet
CrossRef
- B. S. El-Desouky and R. S. Gomaa, A new unified family of generalized Apostol-Euler, Bernoulli and Genocchi polynomials, Appl. Math. Comput. 247 (2014), 695-702.
MathSciNet
CrossRef
- B. K. Karande and N. K. Thakare, On the unification of the Bernoulli and Euler polynomials, Indian J. Pure Appl. Math. 6 (1975), 98-107.
MathSciNet
- M. Eini Keleshteri and N. I. Mahmudov, A study on q-Appell polynomials from determinantal point of view, Appl. Math. Comput. 260 (2015), 351-369.
MathSciNet
CrossRef
- M. Eini Keleshteri and N. I. Mahmudov, On the class of 2 D q-Appell polynomials, arXiv:1512.03255v1.
- Subuhi Khan, G. Yasmin and M. Riyasat, Certain results for the 2-variable Apostol type and related polynomials, Comput. Math. Appl. 69 (2015), 1367-1382.
MathSciNet
CrossRef
- B. Kurt, A note on the Apostol type q-Frobenius-Euler polynomials and generalizations of the Srivastava-Pinter
addition theorems, Filomat 30 (2016), 65-72.
MathSciNet
CrossRef
- B. Kurt and Y. Simsek, Frobenius-Euler type polynomials related to Hermite-Bernoulli polyomials, Numerical Analysis and Appl. Math. ICNAAM 2011 Conf. Proc. 1389 (2011), 385-388.
- Q.-M. Luo and H. M. Srivastava, Some generalizations of the Apostol-Genocchi polynomials and the Stirling numbers of the second kind, Appl. Math. Comput. 217 (2011), 5702-5728.
MathSciNet
CrossRef
- N. I. Mahmudov, On a class of q-Bernoulli and q-Euler polynomials, Adv. Difference Equ. 108 (2013), 11 pp.
MathSciNet
CrossRef
- N. I. Mahmudov, Difference equations of q-Appell polynomials, Appl. Math. Comput. 245 (2014), 539-543.
MathSciNet
CrossRef
- N. I. Mahmudov and M. E. Keleshteri, On a class of generalized q-Bernoulli and q-Euler polynomials, Adv. Difference Equ. 115 (2013), 10 pp.
MathSciNet
CrossRef
- N. I. Mahmudov and M. E. Keleshteri, q-extensions for the Apostol type polynomials, J. Appl. Math. (2014) Art. ID 868167, 8 pp.
MathSciNet
CrossRef
- N. I. Mahmudov and M. Momenzadeh, On a class of q-Bernoulli, q-Euler and q-Genocchi polynomials, Abstr. Appl. Anal. (2014), Art. ID 696454, 10 pp.
- M. A. Özarslan, Unified Apostol-Bernoulli, Euler and Genocchi polynomials, Comput. Math. Appl. 62 (2011), 2452-2462.
MathSciNet
CrossRef
- H. Ozden and Y. Simsek, Modification and unification of the Apostol-type numbers and polynomials, Appl. Math. Comput. 235 (2014), 338-351.
MathSciNet
CrossRef
- H. Ozden, Y. Simsek and H. M. Srivastava, A unified presentation of the generating function of the generalized Bernoulli, Euler
and Genocchi polynomials, Comput. Math. Appl. 60 (2010), 2779-2787.
MathSciNet
CrossRef
- M. Riyasat, S. Khan and T. Nahid, q-difference equations for the composite 2D q-Appell polynomials and their applications, Cogent Math. 4 (2017), 1-23.
- M. Riyasat, S. Khan and N. I. Mahmudov, A numerical computation of zeros and finding
determinant forms for some new families of q-special polynomials, Azerbaijan Journal of Mathematics, to appear.
- Y. Simsek, Generating functions for q-Apostol type Frobenius-Euler numbers and polynomials, Axioms 1 (2012), 395-403.
- Y. Simsek, Generating functions for generalized Stirling type numbers, Array type polynomials, Eulerian type polynomials and
their applications, Fixed Point Theory Appl. 87 (2013), 28 pp.
MathSciNet
CrossRef
Glasnik Matematicki Home Page