Glasnik Matematicki, Vol. 53, No. 1 (2018), 1-7.
NEW UPPER BOUNDS FOR RAMANUJAN PRIMES
Anitha Srinivasan and Pablo
Ares-Gastesi
Saint Louis University - Madrid Campus,
Avenida del Valle 34, 28003 Madrid, Spain
e-mail: rsrinivasan.anitha@gmail.com
Department of Applied Mathematics and
Statistics, School of Business and Economics, Universidad CEU San
Pablo, Madrid, Spain
e-mail: pablo.aresgastesi@ceu.es
Abstract.
For n≥ 1, the nth Ramanujan prime is defined
as the smallest positive integer Rn such that for all x≥ Rn,
the interval (x/2, x] has at least n primes.
We show that for every ε>0, there is a positive integer N
such that if α=2n(1+(log 2+ε)/(log n+j(n))),
then Rn< p[α] for all n>N, where pi is the ith
prime and j(n)>0 is any function that satisfies
j(n)→ ∞ and nj'(n)→ 0.
2010 Mathematics Subject Classification.
11A41, 11N05.
Key words and phrases. Ramanujan primes, upper bounds.
Full text (PDF) (free access)
DOI: 10.3336/gm.53.1.01
References:
- C. Axler, Über die Primzahl-Zählfunktion,
die n-te Primzahl und verallgemeinerte Ramanujan Primzahlen,
Ph.D. thesis, 2013 (in German),
http://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=26247
- C. Axler, On generalized Ramanujan primes,
Ramanujan J. 39 (2016), 1-30.
MathSciNet
CrossRef
- P. Dusart, Explicit estimates of some functions over primes, Ramanujan J. 45 (2018), 227-251.
MathSciNet
CrossRef
- S. Laishram,
On a conjecture on Ramanujan primes, Int. J. Number Theory 6
(2010), 1869-1873.
MathSciNet
CrossRef
- J. B. Paksoy, Derived Ramanujan primes Rn'.
http:/arxiv.org/abs/1210.6991
- V. Shevelev, Ramanujan and Labos primes, their
generalizations and classifications of primes, J. Integer Seq. 15
(2012), Article 12.1.1.
MathSciNet
- J. Sondow, Ramanujan primes and Bertrand's postulate,
Amer. Math. Monthly 116 (2009), 630-635.
MathSciNet
CrossRef
- J. Sondow, J. W. Nicholson, T. D. Noe,
Ramanujan primes: bounds, runs, twins, and gaps,
J. Integer Seq. 14 (2011), Article 11.6.2.
MathSciNet
- A. Srinivasan, An upper bound for Ramanujan
primes, Integers 14 (2014), paper A19.
MathSciNet
- A. Srinivasan and J. Nicholson, An improved upper
bound for Ramanujan primes, Integers 15 (2015), paper A52.
MathSciNet
- S. Yang and A. Togbé On the estimates of the upper
and lower bounds of Ramanujan primes, Ramanujan J. 40 (2016), 245-255.
MathSciNet
CrossRef
Glasnik Matematicki Home Page