Glasnik Matematicki, Vol. 52, No. 2 (2017), 361-375.
AN EXTENDED DAI-LIAO CONJUGATE GRADIENT METHOD WITH GLOBAL CONVERGENCE FOR NONCONVEX FUNCTIONS
Mohammad Reza Arazm, Saman Babaie-Kafaki and Reza Ghanbari
Department of Mathematics,
Faculty of Mathematics, Statistics and Computer Science,
Semnan University, P.O. Box: 35195-363, Semnan, Iran
e-mail: mohamadreza.arazm@semnan.ac.ir
Department of Mathematics,
Faculty of Mathematics, Statistics and Computer Science,
Semnan University, P.O. Box: 35195-363, Semnan, Iran
e-mail: sbk@semnan.ac.ir
Faculty of Mathematical Sciences, Ferdowsi University of Mashhad, P.O. Box: 9177948953, Mashhad, Iran
e-mail: rghanbari@um.ac.ir
Abstract.
Using an extension of some previously proposed modified secant equations in the Dai-Liao approach, a modified nonlinear conjugate gradient method is proposed.
As interesting features, the method employs the objective function values in addition to the gradient information and satisfies the sufficient descent property with proper
choices for its parameter. Global convergence of the method is established without convexity assumption on the objective function. Results of numerical comparisons are reported.
They demonstrate efficiency of the proposed method in the sense of the Dolan-Moré performance profile.
2010 Mathematics Subject Classification.
65K05, 90C53, 49M37.
Key words and phrases. Unconstrained optimization, large-scale optimization, conjugate gradient method, sufficient descent property, nonconvexity, global convergence.
Full text (PDF) (free access)
DOI: 10.3336/gm.52.2.12
References:
-
N. Andrei,
Numerical comparison of conjugate gradient algorithms for
unconstrained optimization,
Stud. Inform. Control 16 (2007), 333-352.
-
N. Andrei,
Open problems in conjugate gradient algorithms for unconstrained
optimization,
Bull. Malays. Math. Sci. Soc. (2) 34 (2011), 319-330.
MathSciNet
-
S. Babaie-Kafaki,
A modified BFGS algorithm based on a hybrid secant equation,
Sci. China Math. 54 (2011), 2019-2036.
MathSciNet
CrossRef
-
S. Babaie-Kafaki,
On the sufficient descent condition of the Hager-Zhang conjugate gradient methods,
4OR 12 (2014), 285-292.
MathSciNet
CrossRef
-
S. Babaie-Kafaki and R. Ghanbari,
The Dai-Liao nonlinear conjugate gradient method with optimal
parameter choices,
European J. Oper. Res. 234 (2014), 625-630.
MathSciNet
CrossRef
-
S. Babaie-Kafaki and R. Ghanbari,
A descent family of Dai-Liao conjugate gradient methods,
Optim. Methods Softw. 29 (2014), 583-591.
MathSciNet
CrossRef
-
S. Babaie-Kafaki and R. Ghanbari,
An extended three-term conjugate gradient method with sufficient
descent property,
Miskolc Math. Notes 16 (2015), 45-55.
MathSciNet
-
S. Babaie-Kafaki and R. Ghanbari,
A hybridization of the Hestenes-Stiefel and Dai-Yuan conjugate gradient methods based on a least-squares approach,
Optim. Methods Softw. 30 (2015), 673-681.
MathSciNet
CrossRef
-
S. Babaie-Kafaki and R. Ghanbari,
Two optimal Dai-Liao conjugate gradient methods,
Optimization 64 (2015), 2277-2287.
MathSciNet
CrossRef
-
S. Babaie-Kafaki, R. Ghanbari and N. Mahdavi-Amiri,
Two new conjugate gradient methods based on modified secant
equations,
J. Comput. Appl. Math. 234 (2010), 1374-1386.
MathSciNet
CrossRef
-
Y.H. Dai and C.X. Kou,
A nonlinear conjugate gradient algorithm with an optimal property and an improved Wolfe line search,
SIAM J. Optim. 23 (2013), 296-320.
MathSciNet
CrossRef
-
Y.H. Dai and L.Z. Liao,
New conjugacy conditions and related nonlinear conjugate gradient
methods,
Appl. Math. Optim. 43 (2001), 87-101.
MathSciNet
CrossRef
-
E.D. Dolan and J.J. Moré,
Benchmarking optimization software with performance profiles,
Math. Program. 91 (2002), 201-213.
MathSciNet
CrossRef
-
J.A. Ford and I.A. Moghrabi,
Multi-step quasi-Newton methods for optimization,
J. Comput. Appl. Math. 50 (1994), 305-323.
MathSciNet
CrossRef
-
J.A. Ford, Y. Narushima and H. Yabe,
Multi-step nonlinear conjugate gradient methods for unconstrained
minimization,
Comput. Optim. Appl. 40 (2008), 191-216.
MathSciNet
CrossRef
-
N.I.M. Gould, D. Orban and Ph.L. Toint,
CUTEr: a constrained and unconstrained testing environment,
revisited,
ACM Trans. Math. Softw. 29 (2003), 373-394.
MathSciNet
CrossRef
-
Q. Guo, J.G. Liu and D.H. Wang,
A modified BFGS method and its superlinear convergence in nonconvex
minimization with general line search rule,
J. Appl. Math. Comput. 28 (2008), 435-446.
MathSciNet
CrossRef
-
W.W. Hager and H. Zhang,
A new conjugate gradient method with guaranteed descent and an
efficient line search,
SIAM J. Optim. 16 (2005), 170-192.
MathSciNet
CrossRef
-
W.W. Hager and H. Zhang,
Algorithm 851: CG-Descent, a conjugate gradient method with
guaranteed descent,
ACM Trans. Math. Software 32 (2006), 113-137.
MathSciNet
CrossRef
-
W.W. Hager and H. Zhang,
A survey of nonlinear conjugate gradient methods,
Pac. J. Optim. 2 (2006), 35-58.
MathSciNet
-
M.R. Hestenes and E. Stiefel,
Methods of conjugate gradients for solving linear systems,
J. Research Nat. Bur. Standards 49 (1952), 409-436.
MathSciNet
CrossRef
-
D.H. Li and M. Fukushima,
A modified BFGS method and its global convergence in nonconvex
minimization,
J. Comput. Appl. Math. 129 (2001), 15-35.
MathSciNet
CrossRef
-
G. Li, C. Tang, and Z. Wei,
New conjugacy condition and related new conjugate gradient methods
for unconstrained optimization,
J. Comput. Appl. Math. 202 (2007), 523-539.
MathSciNet
CrossRef
-
D.C. Liu and J. Nocedal,
On the limited memory BFGS method for large-scale optimization,
Math. Programming 45 (1989), 503-528.
MathSciNet
CrossRef
-
M.J.D. Powell,
Restart procedures for the conjugate gradient method,
Math. Programming 12 (1977), 241-254.
MathSciNet
CrossRef
-
M.J.D. Powell,
Nonconvex minimization calculations and the conjugate gradient
method,
in D.F. Griffiths (Ed.), Numerical analysis (Dundee,
1983), Lecture Notes in Math. 1066, Springer, Berlin, 1984, 122-141.
MathSciNet
CrossRef
-
K. Sugiki, Y. Narushima, and H. Yabe,
Globally convergent three-term conjugate gradient methods that use
secant conditions and generate descent search directions for unconstrained
optimization,
J. Optim. Theory Appl. 153 (2012), 733-757.
MathSciNet
CrossRef
-
W. Sun and Y.X. Yuan,
Optimization theory and methods. Nonlinear
programming,
Springer, New York, 2006.
MathSciNet
-
Z. Wei, G. Li and L. Qi,
New quasi-Newton methods for unconstrained optimization
problems,
Appl. Math. Comput. 175 (2006), 1156-1188.
MathSciNet
CrossRef
-
P. Wolfe,
Convergence conditions for ascent methods,
SIAM Rev. 11 (1969), 226-235.
MathSciNet
CrossRef
-
C. Xu and J.Z. Zhang,
A survey of quasi-Newton equations and quasi-Newton methods
for optimization,
Ann. Oper. Res. 103 (2001), 213-234.
MathSciNet
CrossRef
-
H. Yabe and M. Takano,
Global convergence properties of nonlinear conjugate gradient methods
with modified secant condition,
Comput. Optim. Appl. 28 (2004), 203-225.
MathSciNet
CrossRef
-
Y.X. Yuan,
A modified BFGS algorithm for unconstrained optimization,
IMA J. Numer. Anal. 11 (1991), 325-332.
MathSciNet
CrossRef
-
Y.X. Yuan and R.H. Byrd,
Non-quasi-Newton updates for unconstrained optimization,
J. Comput. Math. 13 (1995), 95-107.
MathSciNet
-
J. Zhang and C. Xu,
Properties and numerical performance of quasi-Newton methods
with modified quasi-Newton equations,
J. Comput. Appl. Math. 137 (2001), 269-278.
MathSciNet
CrossRef
-
J.Z. Zhang, N.Y. Deng and L.H. Chen,
New quasi-Newton equation and related methods for unconstrained
optimization,
J. Optim. Theory Appl. 102 (1999), 147-167.
MathSciNet
CrossRef
-
W. Zhou and L. Zhang,
A nonlinear conjugate gradient method based on the MBFGS secant
condition,
Optim. Methods Softw. 21 (2006), 707-714.
MathSciNet
CrossRef
Glasnik Matematicki Home Page