Glasnik Matematicki, Vol. 52, No. 2 (2017), 289-294.

IDEALITY IN HILBERT C*-MODULES: IDEAL SUBMODULES VS. TERNARY IDEALS

Biserka Kolarec

Department of Information Science and Mathematics, Faculty of Agriculture, University of Zagreb, Sveto šimunska cesta 25, 10 000 Zagreb, Croatia
e-mail: bkudelic@agr.hr

Abstract.   The definition of ideal submodules of Hilbert C*-modules is known and classical. We introduce a definition of ternary ideals of Hilbert C*-modules and show that in general the set of norm-closed ternary ideals is richer than the set of ideal submodules.

2010 Mathematics Subject Classification.   46C50, 46L08.

Key words and phrases.   Hilbert C*-modules, ideal submodules, ternary homomorphisms, ternary ideals.


Full text (PDF) (free access)

DOI: 10.3336/gm.52.2.08


References:

  1. D. Bakić and B. Guljaš, On a class of module maps of Hilbert C*-modules, Math. Commun. 7 (2002), 177-192.
    MathSciNet    

  2. D. Bakić and B. Guljaš, Extensions of Hilbert C*-modules, Houston J. Math. 30 (2004), 537-558.
    MathSciNet    

  3. D. Bakić and B. Guljaš, Extensions of Hilbert C*-modules. II, Glas. Mat. Ser. III 38(58) (2003), 341-357.
    MathSciNet     CrossRef

  4. L. G. Brown, P. P. Green and M. A. Rieffel, Stable isomorphisms and strong Morita equivalence of C*-algebras, Pacific J. Math. 71 (1977), 349-363.
    MathSciNet     CrossRef

  5. I. Raeburn and D. P. Williams, Morita equivalence and continuous-trace C*-algebras, Mathematical Surveys and Monographs 60, AMS, Providence, 1998.
    MathSciNet     CrossRef

  6. G. A. Tabadkan and M. Skeide, Generators of dynamical systems on Hilbert modules, Commun. Stoch. Anal. 1 (2007), 193-207.
    MathSciNet    

  7. A. Takahashi, Hilbert modules and their representation, Rev. Colombiana Mat. 13 (1979), 1-38.
    MathSciNet    

Glasnik Matematicki Home Page