Glasnik Matematicki, Vol. 52, No. 2 (2017), 235-240.
ROOTS OF UNITY AS QUOTIENTS OF TWO CONJUGATE ALGEBRAIC NUMBERS
Artūras Dubickas
Department of Mathematics and Informatics, Vilnius
University,
Naugarduko 24, Vilnius LT-03225, Lithuania
e-mail: arturas.dubickas@mif.vu.lt
Abstract.
Let α be an algebraic number of degree d ≥ 2 over Q. Suppose for some pairwise coprime positive integers
n1,… ,nr we have deg(αnj) < d for j=1,…,r, where
deg(αn)=d for each positive proper divisor n of nj.
We prove that then
φ(n1 … nr) ≤ d, where φ stands for the Euler totient function. In particular, if nj=pj, j=1,…,r, are any r distinct primes satisfying deg(αpj) < d, then the inequality (p1-1)… (pr-1) ≤ d holds, and therefore
r ≪ log d/log log d
for d ≥ 3. This bound on r improves that of Dobrowolski
r ≤ log d/log 2 proved in 1979 and is best possible.
2010 Mathematics Subject Classification.
11R04, 11R18.
Key words and phrases. Root of unity,
conjugate algebraic numbers, degenerate linear recurrence sequence.
Full text (PDF) (free access)
DOI: 10.3336/gm.52.2.03
References:
-
M. G. Aschbacher and R. M. Guralnick, On Abelian
quotients of primitive groups, Proc. Amer. Math. Soc. 107
(1989), 89-95.
MathSciNet
CrossRef
-
J. Berstel and M. Mignotte, Deux propriétés
décidables des suites recurrentes linéaires, Bull. Soc. Math.
France 104 (1976), 175-194.
MathSciNet
CrossRef
-
E. Dobrowolski,
On a question of Lehmer and the number of irreducible factors of a polynomial,
Acta Arith. 34 (1979) 391-401.
MathSciNet
CrossRef
-
P. Drungilas and A. Dubickas, On subfields of a field
generated by two conjugate algebraic numbers, Proc. Edinburgh
Math. Soc. 47 (2004), 119-123.
MathSciNet
CrossRef
-
A. Dubickas,
Roots of unity as quotients of two roots of a polynomial, J. Austral. Math. Soc. 92 (2012), 137-144.
MathSciNet
CrossRef
-
A. Dubickas and M. Sha,
Counting degenerate polynomials of fixed degree
and bounded height,
Monatsh. Math. 177 (2015), 517-537.
MathSciNet
CrossRef
-
G. Everest, A. van der Poorten, I. Shparlinski and T. Ward,
Recurrence sequences, Mathematical Surveys and Monographs
104, American Mathematical Society, Providence, RI, 2003.
MathSciNet
CrossRef
- I. M. Isaacs, Quotients which
are roots of unity (solution of problem 6523), Amer. Math.
Monthly 95 (1988), 561-562.
MathSciNet
CrossRef
-
D. Masser,
Auxiliary polynomials in number theory,
Cambridge Tracts in Mathematics 207,
Cambridge University Press, Cambridge, 2016.
MathSciNet
CrossRef
-
E. M. Matveev, On a connection between the Mahler measure and the discriminant of algebraic numbers, Math. Notes 59 (1996), 293-297.
MathSciNet
CrossRef
-
P. Robba, Zéros de suites récurrentes
linéaires, Groupe Étude Anal. Ultramétrique, 5e Année
(1977/78), Exposé No. 13, Paris, 1978, 5 p.
MathSciNet
- A. Schinzel, Around Pólya's
theorem on the set of prime divisors
of a linear recurrence, in: Diophantine equations. Tata Inst. Fund. Res. Stud. Math., 20, Tata Inst. Fund. Res., Mumbai, 2008, pp. 225-233.
MathSciNet
-
K. Yokoyama, Z. Li and I. Nemes, Finding roots of unity
among quotients of the roots of an integral polynomial, in:
Proceedings of the 1995 international symposium on symbolic and
algebraic computation (ed. A.H.M. Levelt), ISSAC'95, Montreal,
Canada, July 10-12, 1995, New York, NY: ACM Press, 1995, pp.
85-89.
Glasnik Matematicki Home Page