Glasnik Matematicki, Vol. 52, No. 1 (2017), 163-177.
COMMON FIXED POINT THEOREMS FOR A FAMILY OF
MULTIVALUED F-CONTRACTIONS WITH AN APPLICATION TO SOLVE A SYSTEM
OF INTEGRAL EQUATIONS
Tayyab Kamran,
Fahimuddin and Muhammad Usman Ali
Department of Mathematics,
Quaid-i-Azam University,
Islamabad,
Pakistan
&
Department of Mathematics, School of Natural
Sciences, National University of Sciences and Technology,
Islamabad, Pakistan
e-mail: tayyabkamran@gmail.com
Department of Mathematics,
Quaid-i-Azam University,
Islamabad,
Pakistan
e-mail: fahamiiu@gmail.com
Department of Mathematics,
COMSATS Institute of Information Technology,
Attock,
Pakistan
e-mail: muh_usman_ali@yahoo.com
Abstract.
Inspired by the work of Wardowski in [33]
and Samet et al. in [26],
in this article, we introduce some new
contractive conditions for sequence of multi functions. We have
constructed non-trivial examples to validate our results. We have
applied our results to find a solution of a system of integral
equations.
2010 Mathematics Subject Classification.
47H10, 54H25.
Key words and phrases. α-admissible sequences, α*-admissible
sequences, F-contractions.
Full text (PDF) (free access)
DOI: 10.3336/gm.52.1.12
References:
- O. Acar and I. Altun,
A fixed point theorem for multivalued mappings with
δ-distance, Abstr. Appl. Anal. 2014, Art.
ID 497092, 5 pp.
MathSciNet
CrossRef
- M. U. Ali, T. Kamran and E. Karapinar,
Further discussion on modified multivalued
α*-ψ- contractive type mapping,
Filomat 29 (2015), 1893-1900.
MathSciNet
CrossRef
- M. U. Ali, T. Kamran and E. Karapinar, A new approach to (α,ψ)-contractive
nonself multivalued mappings, J. Inequal. Appl. 2014,
2014:71, 9 pp.
MathSciNet
CrossRef
- M. U. Ali, Q. Kiran and N. Shahzad,
Fixed point theorems for multivalued mappings involving
α-function,
Abstr. Appl. Anal. 2014, Art. ID 409467, 6pp.
MathSciNet
CrossRef
- M. U. Ali, T. Kamran and N. Shahzad, Best proximity point for α-ψ-proximal contractive
multimaps, Abstr. Appl. Anal. 2014, Art. ID 181598, 6pp.
MathSciNet
CrossRef
- M. U. Ali and T. Kamran, On (α*,ψ)-contractive multi-valued
mappings, Fixed Point Theory Appl. 2013, 2013:137, 7pp.
MathSciNet
CrossRef
- J. H. Asl, S. Rezapour and N. Shahzad, On fixed points of α-ψ-contractive
multifunctions, Fixed Point Theory Appl. 2012, 2012:212, 6pp.
MathSciNet
CrossRef
- H. Aydi, E. Karapinar and B. Samet, Fixed points for
generalized (α,ψ)-contractions on generalized metric
spaces, J. Inequal. Appl. 2014, 2014:229, 16pp.
MathSciNet
CrossRef
- R. Batra and S. Vashistha, Fixed points of an F-contraction on metric spaces with a
graph, Int. J. Comput. Math. 91 (2014), 2483-2490.
MathSciNet
CrossRef
- M. Berinde and V. Berinde, On a general class of multi-valued weakly Picard
mappings, J. Math. Anal. Appl. 326 (2007), 772-782.
MathSciNet
CrossRef
- F. Bojor, Fixed points of Kannan mappings in metric
spaces endowed with a graph, An. Stiint. Univ. "Ovidius'' Constanta Ser. Mat.
20 (2012), 31-40.
MathSciNet
- S. H. Cho, Fixed point theorems for α-ψ-contractive type
mappings in metric spaces, Appl. Math. Sci. (Ruse) 7 (2013),
6765-6778.
MathSciNet
CrossRef
- M. Cosentino and P. Vetro, Fixed point results for F-contractive mappings
of Hardy-Rogers-type, Filomat 28 (2014), 715-722.
MathSciNet
CrossRef
- Y. Feng and S. Liu, Fixed point theorems for multi-valued contractive
mappings and multi-valued Caristi type mappings, J. Math. Anal.
Appl. 317 (2006), 103-112.
MathSciNet
CrossRef
- E. Karapinar, Discussion on (α,ψ) contractions
on generalized metric spaces, Abstr. Appl. Anal. 2014, Art. ID
962784, 7pp.
MathSciNet
CrossRef
- E. Karapinar and B. Samet, Generalized α-ψ-contractive type mappings and related
fixed point theorems with applications, Abstr. Appl. Anal. 2012,
Art. ID 793486.
MathSciNet
- E. Karapinar and R. P. Agarwal, A note on 'Coupled fixed point theorems for α-ψ-contractive-type mappings in partially ordered metric spaces',
Fixed Point Theory Appl. 2013, 2013:216, 16pp.
MathSciNet
CrossRef
- M. A. Miandaragh,
M. Postolache and Sh. Rezapour, Some approximate fixed point
results for generalized α-contractive mappings, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 75 (2013), 3-10.
MathSciNet
- G. Minak and I. Altun, Some new generalizations of Mizoguchi-Takahashi type fixed point
theorem, J. Inequal. Appl. 2013, 2013:493, 10pp.
MathSciNet
CrossRef
- G. Minak, A. Helvaci and I. Altun, Ćirić type generalized F-contractions on
complete metric spaces and fixed point results, Filomat 28 (2014), 1143-1151.
MathSciNet
CrossRef
- B. Mohammadi, S. Rezapour and N Shahzad, Some results on
fixed points of α-ψ-Ciric generalized multifunctions, Fixed
Point Theory Appl. 2013, 2013:24, 10pp.
MathSciNet
CrossRef
- D. Paesano and C. Vetro, Multi-valued F-contractions in 0-complete partial metric
spaces with application to Volterra type integral equation, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 108 (2014), 1005-1020.
MathSciNet
CrossRef
- H. K. Pathak and N. Shahzad, Fixed point results for set-valued contractions
by altering distances in complete metric spaces, Nonlinear Anal.
70 (2009), 2634-2641.
MathSciNet
CrossRef
- H. Piri and P. Kumam, Some fixed point theorems concerning
F-contraction in complete metric spaces, Fixed Point Theory Appl.
2014, 2014:210, 11pp.
MathSciNet
CrossRef
- D. O'Regan and A. Petrusel, Fixed point theorems for
generalized contractions in ordered metric spaces, J. Math. Anal.
Appl. 341 (2008), 1241-1252.
MathSciNet
CrossRef
- B. Samet, C. Vetro and P. Vetro, Fixed point theorems for α-ψ-contractive type
mappings, Nonlinear Anal. 75 (2012), 2154-2165.
MathSciNet
CrossRef
- P. Salimi, A. Latif and N. Hussain, Modified α-ψ-contractive mappings with applications, Fixed Point Theory Appl. 2013, 2013:151, 19pp.
MathSciNet
CrossRef
- N.-A. Secelean, Iterated function systems consisting
of F-contractions, Fixed Point Theory Appl. 2013,
2013:277, 13pp.
MathSciNet
CrossRef
- M. Sgroi and C. Vetro, Multi-valued F-contractions and the solution of certain functional and integral equations, Filomat 27
(2013), 1259-1268.
MathSciNet
CrossRef
- W. Shatanawi and M. Postolache, Some fixed point results for a G-weak
contraction in G-metric spaces, Abstr. Appl. Anal. 2012, Art.
ID 815870, 19 pp.
MathSciNet
- T. Sistani and M. Kazemipour, Fixed point theorems for α-ψ-contractions on metric spaces with a
graph, J. Adv. Math. Stud. 7 (2014), 65-79.
MathSciNet
- S. L. Singh, S. N. Mishra and S. Jain, Round-off stability for
multi-valued maps,
Fixed Point Theory Appl. 2012, 2012:12, 10pp.
MathSciNet
CrossRef
- D. Wardowski, Fixed points of a new type of contractive
mappings in complete metric spaces, Fixed Point Theory Appl.
2012, 2012:94, 6pp.
MathSciNet
CrossRef
Glasnik Matematicki Home Page