Glasnik Matematicki, Vol. 52, No. 1 (2017), 115-130.
ON A NEW CLASS OF FUNCTIONAL SPACES WITH APPLICATION TO THE VELOCITY AVERAGING
Martin Lazar and Darko Mitrović
Department of Electrical Engineering and Computing,
University of Dubrovnik,
Ćira Carića 4, 20000 Dubrovnik,
Croatia
e-mail: martin.lazar@unidu.hr
Faculty of Mathematics and Natural Sciences,
University of Montenegro,
Cetinjski put bb, 81000 Podgorica,
Montenegro
e-mail: darkom@ac.me
Abstract.
We introduce a new family of functional spaces which incorporate Bochner spaces
Lp(Rm; E), with E being an appropriate Banach space, and
to which we extend the H-distributions. We use the
developed theory to prove a general version of the velocity averaging lemma in a heterogeneous Lp, p ≤ 2 setting.
2010 Mathematics Subject Classification.
35A27, 46B50, 47G30.
Key words and phrases. H-distributions, velocity averaging, non-degeneracy condition.
Full text (PDF) (free access)
DOI: 10.3336/gm.52.1.09
References:
- N. Antonić and D. Mitrović, H-distributions: an extension of H-measures to an Lp-Lq setting, Abstr. Appl. Anal.
2011, Art. ID 901084, 12 pp.
MathSciNet
CrossRef
- P. Gérard, Microlocal defect measures, Comm. Partial Differential Equations 16 (1991), 1761-1794.
MathSciNet
CrossRef
- F. Golse, P.-L. Lions, B. Perthame and R. Sentis, Regularity of
the moments of the solution of a transport equation, J. Funct.
Anal. 76 (1988), 110-125.
MathSciNet
CrossRef
- L. Grafakos, Classical Fourier analysis,
Springer, New York, 2008.
MathSciNet
- M. Lazar and D. Mitrović, The velocity averaging for a heterogeneous heat type equation,
Math. Commun. 16 (2011), 271-282.
MathSciNet
- M. Lazar and D. Mitrović, Velocity averaging - a general framework,
Dyn. of Partial Differ. Equ. 9 (2012), 239-260.
MathSciNet
CrossRef
- M. Lazar and D. Mitrović, On an extension of a bilinear functional on Lp(Rd) × E to a Bochner space with an application to velocity averaging,
C. R. Math. Acad. Sci. Paris 351 (2013), 261-264.
MathSciNet
CrossRef
- M. Lazar and D. Mitrović, On the velocity averaging for equations with optimal heterogeneous rough coefficients, preprint available on arXiv, http://arxiv.org/pdf/1310.4285.pdf.
- E. Yu. Panov,
Ultra-parabolic equations with rough coefficients. Entropy
solutions and strong precompactness property, J. Math. Sci. (N.Y.)
159 (2009), 180-228.
MathSciNet
CrossRef
- B. Perthame and P.E. Souganidis, A limiting case for velocity averaging, Ann.
Sci. École Norm. Sup. (4) 31 (1998), 591-598.
MathSciNet
CrossRef
- E. Tadmor and T. Tao, Velocity averaging, kinetic formulations, and regularizing effects in quasi-linear PDEs, Comm. Pure Appl. Math. 60 (2007), 1488-1521.
MathSciNet
CrossRef
- L. Tartar, H-measures, a new approach for studying homogenisation,
oscillation and concentration effects in partial differential equations,
Proc. Roy. Soc. Edinburgh Sect. A 115 (1990), 193-230.
MathSciNet
CrossRef
- L. Tartar, The general theory of homogenization: a personalized introduction,
Springer-Verlag, Berlin, 2009.
MathSciNet
CrossRef
-
L. R. Volevich and B. P. Paneyakh, Certain spaces of
generalized functions and embedding theorems, Russ. Math. Surv.
20 (1965), 1-73.
CrossRef
-
K. Yosida, Functional analysis,
Springer-Verlag, Berlin-New York, 1980.
MathSciNet
Glasnik Matematicki Home Page