Glasnik Matematicki, Vol. 52, No. 1 (2017), 53-77.
TWISTED SL(3, C)˜-MODULES AND COMBINATORIAL IDENTITIES
Ivica Siladić
Department of Mathematics,
University of Zagreb,
Bijenička 30, 10000 Zagreb,
Croatia
e-mail: ivica.siladic@mireo.hr
Abstract.
The main result of this paper is a combinatorial description of a basis of standard level 1 module for the twisted
affine Lie algebra A2(2). This description also gives two new combinatorial identities of Göllnitz (or Rogers-Ramanujan) type. Methods used through the paper are mainly developed by J. Lepowsky, R. L. Wilson, A.
Meurman and M. Primc, and the crucial role in constructions plays a vertex operator algebra approach to standard
representations of affine Lie algebras.
2010 Mathematics Subject Classification.
17B67, 05A19.
Key words and phrases. Twisted affine Lie algebras, standard modules, vertex operator algebras,
colored partitions, Rogers-Ramanujan identities.
Full text (PDF) (free access)
DOI: 10.3336/gm.52.1.05
References:
-
G.E. Andrews, The theory of partitions, Encyclopedia of Mathematics and its Applications, Vol. 2,
Addison-Wesley, Reading, 1976.
MathSciNet
-
J. Borcea, Dualities, affine vertex operator algebras, and geometry of complex polynomials, Ph.D.
dissertation, University of Lund, 1998.
-
S. Capparelli, A construction of the level 3 modules for the affine Lie algebra A2(2) and a new combinatorial
identity of the Rogers-Ramanujan type, Trans. Amer. Math. Soc. 348 (1996), 481-501.
MathSciNet
CrossRef
-
I. Frenkel, Y.-Z. Huang and J. Lepowsky, On axiomatic approaches to vertex operator algebras and modules,
Mem. Amer. Math. Soc. 104 (1993), 64pp.
MathSciNet
CrossRef
- I. B. Frenkel and Y. Zhu, Vertex operator algebras
associated to representations of affine and Virasoro algebras, Duke
Math. J. 66 (1992), 123-168.
MathSciNet
CrossRef
-
H. Göllnitz, Partitionen mit Differenzenbedingungen, J. Reine Angew. Math. 225 (1967),
154-190.
MathSciNet
CrossRef
-
H. Li, Local systems of vertex operators, vertex operator superalgebras and modules, J. Pure Appl.
Algebra 109 (1996), 143-195.
MathSciNet
CrossRef
-
H. Li, Local systems of twisted vertex operators, vertex operator superalgebras and twisted modules, in Moonshine, the Monster, and related topics, Amer. Math. Soc., Providence, 1996, 203-236.
MathSciNet
CrossRef
-
J. Lepowsky and R. L. Wilson, The structure of standard modules. I. Universal algebras and the
Rogers-Ramanujan identities, Invent. Math. 77 (1984), 199-290.
MathSciNet
CrossRef
-
V. G. Kac, Infinite dimensional Lie algebras, 3rd edition, Cambridge University Press, Cambridge, 1990.
MathSciNet
CrossRef
-
A. Meurman and M. Primc, Annihilating ideals of standard modules of sl(2,C)˜ and
combinatorial identities, Adv. in Math. 64 (1987), 177-240.
MathSciNet
CrossRef
-
A. Meurman and M. Primc, Annihilating fields of standard modules of sl(2,C)˜ and
combinatorial identities, Mem. Amer. Math. Soc. 137 (1999), no. 652, 89pp.
MathSciNet
CrossRef
-
A. Meurman and M. Primc, A basis of basic sl(3,C)˜ module, Commun. Contemp. Math.
3 (2001), 593-614.
MathSciNet
CrossRef
-
M. Primc, Relations for annihilating fields of standard modules for affine Lie algebras, in Vertex Operator Algebras in Mathematics and Physics, American Mathematical Society, Providence, 2003, 169-187.
MathSciNet
CrossRef
-
M. Primc, Generators of relations for annihilating fields, in Kac-Moody Lie Algebras and Related Topics, American Mathematical Society, Providence, 2004, 229-241.
MathSciNet
CrossRef
Glasnik Matematicki Home Page