Glasnik Matematicki, Vol. 52, No. 1 (2017), 53-77.

TWISTED SL(3, C)˜-MODULES AND COMBINATORIAL IDENTITIES

Ivica Siladić

Department of Mathematics, University of Zagreb, Bijenička 30, 10000 Zagreb, Croatia
e-mail: ivica.siladic@mireo.hr

Abstract.   The main result of this paper is a combinatorial description of a basis of standard level 1 module for the twisted affine Lie algebra A2(2). This description also gives two new combinatorial identities of Göllnitz (or Rogers-Ramanujan) type. Methods used through the paper are mainly developed by J. Lepowsky, R. L. Wilson, A. Meurman and M. Primc, and the crucial role in constructions plays a vertex operator algebra approach to standard representations of affine Lie algebras.

2010 Mathematics Subject Classification.   17B67, 05A19.

Key words and phrases.   Twisted affine Lie algebras, standard modules, vertex operator algebras, colored partitions, Rogers-Ramanujan identities.


Full text (PDF) (free access)

DOI: 10.3336/gm.52.1.05


References:

  1. G.E. Andrews, The theory of partitions, Encyclopedia of Mathematics and its Applications, Vol. 2, Addison-Wesley, Reading, 1976.
    MathSciNet    

  2. J. Borcea, Dualities, affine vertex operator algebras, and geometry of complex polynomials, Ph.D. dissertation, University of Lund, 1998.

  3. S. Capparelli, A construction of the level 3 modules for the affine Lie algebra A2(2) and a new combinatorial identity of the Rogers-Ramanujan type, Trans. Amer. Math. Soc. 348 (1996), 481-501.
    MathSciNet     CrossRef

  4. I. Frenkel, Y.-Z. Huang and J. Lepowsky, On axiomatic approaches to vertex operator algebras and modules, Mem. Amer. Math. Soc. 104 (1993), 64pp.
    MathSciNet     CrossRef

  5. I. B. Frenkel and Y. Zhu, Vertex operator algebras associated to representations of affine and Virasoro algebras, Duke Math. J. 66 (1992), 123-168.
    MathSciNet     CrossRef

  6. H. Göllnitz, Partitionen mit Differenzenbedingungen, J. Reine Angew. Math. 225 (1967), 154-190.
    MathSciNet     CrossRef

  7. H. Li, Local systems of vertex operators, vertex operator superalgebras and modules, J. Pure Appl. Algebra 109 (1996), 143-195.
    MathSciNet     CrossRef

  8. H. Li, Local systems of twisted vertex operators, vertex operator superalgebras and twisted modules, in Moonshine, the Monster, and related topics, Amer. Math. Soc., Providence, 1996, 203-236.
    MathSciNet     CrossRef

  9. J. Lepowsky and R. L. Wilson, The structure of standard modules. I. Universal algebras and the Rogers-Ramanujan identities, Invent. Math. 77 (1984), 199-290.
    MathSciNet     CrossRef

  10. V. G. Kac, Infinite dimensional Lie algebras, 3rd edition, Cambridge University Press, Cambridge, 1990.
    MathSciNet     CrossRef

  11. A. Meurman and M. Primc, Annihilating ideals of standard modules of sl(2,C)˜ and combinatorial identities, Adv. in Math. 64 (1987), 177-240.
    MathSciNet     CrossRef

  12. A. Meurman and M. Primc, Annihilating fields of standard modules of sl(2,C)˜ and combinatorial identities, Mem. Amer. Math. Soc. 137 (1999), no. 652, 89pp.
    MathSciNet     CrossRef

  13. A. Meurman and M. Primc, A basis of basic sl(3,C)˜ module, Commun. Contemp. Math. 3 (2001), 593-614.
    MathSciNet     CrossRef

  14. M. Primc, Relations for annihilating fields of standard modules for affine Lie algebras, in Vertex Operator Algebras in Mathematics and Physics, American Mathematical Society, Providence, 2003, 169-187.
    MathSciNet     CrossRef

  15. M. Primc, Generators of relations for annihilating fields, in Kac-Moody Lie Algebras and Related Topics, American Mathematical Society, Providence, 2004, 229-241.
    MathSciNet     CrossRef

Glasnik Matematicki Home Page