Glasnik Matematicki, Vol. 51, No. 2 (2016), 491-501.
INVERSE LIMITS WITH COUNTABLY MARKOV INTERVAL FUNCTIONS
Matevž Črepnjak and Tjaša Lunder
Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška 160, SI-2000 Maribor, Slovenia
and
Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia
e-mail: matevz.crepnjak@um.si
Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška 160, SI-2000 Maribor, Slovenia
e-mail: tjasa.lunder@gmail.com
Abstract.
We introduce countably Markov interval functions and show that two inverse limits with countably Markov interval bonding functions are homeomorphic if the functions follow the same pattern. This result presents a generalization of results of S. Holte, and I. Banič and T. Lunder.
2010 Mathematics Subject Classification.
54F50, 37B45, 54C60.
Key words and phrases. Inverse limits, upper semicontinuous functions, countably Markov interval functions.
Full text (PDF) (free access)
DOI: 10.3336/gm.51.2.14
References:
- I. Banič and T. Lunder, Inverse limits with generalized Markov interval functions, Bull. Malays. Math. Sci. Soc. 39 (2016), 839-848.
MathSciNet
CrossRef
- R. Bennett, On inverse limit sequences, Master's Thesis, The University of Tennessee, 1962.
- S. E. Holte, Inverse limits of Markov interval maps, Topology Appl. 123, (2002), 421-427.
MathSciNet
CrossRef
- W. T. Ingram, W. S. Mahavier, Inverse limits of upper semi-continuous set valued functions,
Houston J. Math. 32 (2006), 119-130.
MathSciNet
- W. T. Ingram, An introduction to inverse limits with set-valued functions, Springer, New York, 2012.
MathSciNet
CrossRef
- W. T. Ingram and W. S. Mahavier, Inverse limits, from continua to chaos, Springer, New York, 2012.
MathSciNet
CrossRef
- J. P. Kelly, Inverse limits with irreducible set-valued functions,
Topology Appl. 166 (2014), 15-31.
MathSciNet
CrossRef
- W. S. Mahavier, Inverse limits with subsets of [0,1]× [0,1],
Topology Appl. 141 (2004), 225-231.
MathSciNet
CrossRef
- S. Macias, Topics on continua, Chapman & Hall/CRC, Boca Raton, 2005.
MathSciNet
CrossRef
- S. B. Nadler, Continuum theory. An introduction, Marcel Dekker, Inc., New York, 1992.
MathSciNet
- W. Rudin, Principles of mathematical analysis, McGraw Hill Book Co., New York-Auckland-Düsseldorf, 1976.
MathSciNet
Glasnik Matematicki Home Page