Glasnik Matematicki, Vol. 51, No. 2 (2016), 391-411.

ANALYSIS OF A SIGNORINI PROBLEM WITH NONLOCAL FRICTION IN THERMO-PIEZOELECTRICITY

H. Benaissa, EL-H. Essoufi and R. Fakhar

Univ Hassan 1, Laboratory MISI, 26000 Settat, Morocco
e-mail: benaissa_hicham08@yahoo.fr

Univ Hassan 1, Laboratory MISI, 26000 Settat, Morocco
e-mail: e.h.essoufi@gmail.com

Univ Hassan 1, Laboratory LS3M, 25000 Khouribga, Morocco
e-mail: rfakhar@gmail.com


Abstract.   We consider a mathematical model which describes the frictional unilateral contact between a thermo-piezoelectric body and a rigid electrically conductive foundation. The thermo-piezoelectric constitutive law is assumed to be nonlinear and the contact is modeled with the Signorini condition, the nonlocal Coulomb friction law with slip dependent friction coefficient and the regularized electrical and thermal conductivity conditions. The variational form of this problem is a coupled system which consists of a nonlinear variational inequality for the displacement field and two nonlinear variational equations for the electric potential and the temperature. The existence of a unique weak solution to the problem is proved by using abstract results for elliptic variational inequalities and fixed point arguments.

2010 Mathematics Subject Classification.   35J85, 47J20, 49J40, 74F15, 74G30, 74M10, 74M15, 74S05.

Key words and phrases.   Static frictional contact, thermopiezoelectric material, Signorini conditions, Coulomb's friction, frictional heat generation, variational inequality, variational analysis, fixed point process.


Full text (PDF) (free access)

DOI: 10.3336/gm.51.2.08


References:

  1. M. Aouadi, Generalized thermo-piezoelectric problems with temperature-dependent properties, Int. J. Solids and Structures 43 (2006), 6347-6358.
    CrossRef CrossRef

  2. R.C. Batra and J.S. Yang, Saint-Venant's principle in linear piezoelectricity, J. Elasticity 38 (1995), 209-218.
    MathSciNet     CrossRef

  3. P. Bisegna, F. Lebon and F. Maceri, The unilateral frictional contact of a piezoelectric body with a rigid support, in: Contact Mechanics, Kluwer, Dordrecht, 2002, 347-354.
    MathSciNet     CrossRef

  4. D.S. Chandrasekharaiah, A generalized linear thermoelasticity theory for piezoelectric media, Acta Mech. 71 (1984), 39-49.
    CrossRef

  5. Z. Denkowski, S. Migórski and A. Ochal, A class of optimal control problems for piezoelectric frictional contact models, Nonlinear Anal. Real World Appl. 12 (2011), 1883-1895.
    MathSciNet     CrossRef

  6. El H. Essoufi, El H. Benkhira and R. Fakhar, Analysis and numerical approximation of an electro-elastic frictional contact problem, Adv. Appl. Math. Mech. 2 (2010), 355-378.
    CrossRef

  7. T. Ikeda, Fundamentals of piezoelectricity, Oxford University Press, Oxford, 1990.

  8. S. Migórski, Hemivariational inequality for a frictional contact problem in elasto-piezoelectricity, Discrete Contin. Dyn. Syst. Ser. B 6 (2006), 1339-1356.
    MathSciNet     CrossRef

  9. S. Migórski, A class of hemivariational inequality for electroelastic contact problems with slip dependent friction, Discrete Contin. Dyn. Syst. Ser. S 1 (2008), 117-126.
    MathSciNet     CrossRef

  10. S. Migórski, A. Ochal and M. Sofonea, Weak solvability of a piezoelectric contact problem, European J. Appl. Math. 20 (2009), 145-167.
    MathSciNet     CrossRef

  11. W. Nowacki, Some general theorems of thermo-piezoelectricity, J. Thermal Stresses 1 (1978), 171-182.
    CrossRef

  12. M. Sofonea and EL-H. Essoufi, A piezoelectric contact problem with slip dependent coefficient of friction, Math. Model. Anal. 9 (2004), 229-242.
    MathSciNet    

  13. B. Tengiz and G. Tengiz, Some dynamic problems of the theory of electroelasticity, Mem. Differential Equations Math. Phys. 10 (1997), 1-53.
    MathSciNet    

  14. H.F. Tiersten, On the nonlinear equations of thermoelectroelasticity, Internat. J. Engrg. Sci. 9 (1971), 587-604.
    MathSciNet     CrossRef

  15. Z. Lerguet, M. Shillor and M. Sofonea, A frictional contact problem for an electro-viscoelastic body, Electron. J. Differential Equations 2007 (2007), no. 170, 16 pp.
    MathSciNet    

  16. G. Duvaut, Free boundary problem connected with thermoelasticity and unilateral contact, in: Free boundary problems, Vol II, Ist. Naz. Alta Mat. Francesco Severi, Rome, 1980, 217-236.
    MathSciNet    

Glasnik Matematicki Home Page