Glasnik Matematicki, Vol. 51, No. 2 (2016), 391-411.
ANALYSIS OF A SIGNORINI PROBLEM WITH NONLOCAL FRICTION IN THERMO-PIEZOELECTRICITY
H. Benaissa, EL-H. Essoufi and R. Fakhar
Univ Hassan 1, Laboratory MISI, 26000 Settat, Morocco
e-mail: benaissa_hicham08@yahoo.fr
Univ Hassan 1, Laboratory MISI, 26000 Settat, Morocco
e-mail: e.h.essoufi@gmail.com
Univ Hassan 1, Laboratory LS3M, 25000 Khouribga, Morocco
e-mail: rfakhar@gmail.com
Abstract.
We consider a mathematical model which describes the frictional unilateral
contact between a thermo-piezoelectric body and a rigid electrically conductive
foundation. The thermo-piezoelectric constitutive law is assumed to be nonlinear
and the contact is modeled with the Signorini condition, the nonlocal Coulomb
friction law with slip dependent friction coefficient and the regularized electrical
and thermal conductivity conditions. The variational form of this problem is a coupled
system which consists of a nonlinear variational inequality for the displacement field
and two nonlinear variational equations for the electric potential and the temperature.
The existence of a unique weak solution to the problem is proved by using abstract results for
elliptic variational inequalities and fixed point arguments.
2010 Mathematics Subject Classification.
35J85, 47J20, 49J40, 74F15, 74G30, 74M10, 74M15, 74S05.
Key words and phrases. Static frictional contact, thermopiezoelectric material, Signorini conditions,
Coulomb's friction, frictional heat generation, variational inequality, variational analysis,
fixed point process.
Full text (PDF) (free access)
DOI: 10.3336/gm.51.2.08
References:
- M. Aouadi, Generalized thermo-piezoelectric problems with temperature-dependent properties, Int. J. Solids and Structures 43 (2006), 6347-6358.
CrossRef
CrossRef
- R.C. Batra and J.S. Yang, Saint-Venant's principle in linear
piezoelectricity, J. Elasticity 38 (1995), 209-218.
MathSciNet
CrossRef
- P. Bisegna, F. Lebon and F. Maceri, The unilateral frictional
contact of a piezoelectric body with a rigid support,
in: Contact Mechanics, Kluwer, Dordrecht, 2002, 347-354.
MathSciNet
CrossRef
- D.S. Chandrasekharaiah,
A generalized linear thermoelasticity theory for piezoelectric media,
Acta Mech. 71 (1984), 39-49.
CrossRef
- Z. Denkowski, S. Migórski and A. Ochal,
A class of optimal control problems for piezoelectric frictional contact models,
Nonlinear Anal. Real World Appl. 12 (2011), 1883-1895.
MathSciNet
CrossRef
- El H. Essoufi, El H. Benkhira and R. Fakhar,
Analysis and numerical approximation of an electro-elastic
frictional contact problem,
Adv. Appl. Math. Mech. 2 (2010), 355-378.
CrossRef
- T. Ikeda, Fundamentals of piezoelectricity,
Oxford University Press, Oxford, 1990.
- S. Migórski, Hemivariational inequality for a frictional contact problem in elasto-piezoelectricity,
Discrete Contin. Dyn. Syst. Ser. B 6 (2006), 1339-1356.
MathSciNet
CrossRef
- S. Migórski, A class of hemivariational inequality for
electroelastic contact problems with slip dependent friction,
Discrete Contin. Dyn. Syst. Ser. S 1 (2008), 117-126.
MathSciNet
CrossRef
- S. Migórski, A. Ochal and M. Sofonea, Weak solvability of a piezoelectric contact
problem, European J. Appl. Math. 20 (2009), 145-167.
MathSciNet
CrossRef
- W. Nowacki, Some general theorems of thermo-piezoelectricity,
J. Thermal Stresses 1 (1978), 171-182.
CrossRef
- M. Sofonea and EL-H. Essoufi,
A piezoelectric contact problem with slip dependent coefficient of friction,
Math. Model. Anal. 9 (2004), 229-242.
MathSciNet
- B. Tengiz and G. Tengiz, Some dynamic problems of the theory of
electroelasticity, Mem. Differential Equations Math. Phys.
10 (1997), 1-53.
MathSciNet
- H.F. Tiersten, On the nonlinear equations of thermoelectroelasticity,
Internat. J. Engrg. Sci. 9 (1971), 587-604.
MathSciNet
CrossRef
- Z. Lerguet, M. Shillor and M. Sofonea,
A frictional contact problem for an electro-viscoelastic body,
Electron. J. Differential Equations 2007 (2007), no. 170, 16 pp.
MathSciNet
- G. Duvaut,
Free boundary problem connected with thermoelasticity and unilateral contact,
in: Free boundary problems, Vol II, Ist. Naz. Alta Mat. Francesco Severi, Rome, 1980, 217-236.
MathSciNet
Glasnik Matematicki Home Page