Glasnik Matematicki, Vol. 51, No. 2 (2016), 379-390.
PERRON TYPE THEOREMS FOR SKEW-EVOLUTION SEMIFLOWS
Ciprian Preda, Sebastian Rămneanţu and Raluca Mureşan
Department of Economics and Business Modeling, Faculty of Economics and Business Administration, West University of Timişoara, 300115 Timişoara, Romania
e-mail: ciprian.preda@e-uvt.ro
Department of Mathematics, Faculty of Mathematics and Computer Science, West University of Timişoara, 300115 Timişoara, Romania
e-mail: ramneantusebastian@yahoo.com
Department of Computer Science, Faculty of Mathematics and Computer Science, West University of Timişoara, 300115 Timişoara, Romania
e-mail: raluca.muresan@e-uvt.ro
Abstract.
In the present paper we obtain some results for the asymptotic behavior of a large class
of evolution families. Our approach uses the admissibility method initiated by O. Perron in the 1930's but the test functions that we choose are different from those employed in the case of differential systems.
2010 Mathematics Subject Classification.
34D05, 34D09.
Key words and phrases. Linear skew-evolution semiflow, evolution cocycle, uniform exponential stability, nonuniform exponential stability, Perron method.
Full text (PDF) (free access)
DOI: 10.3336/gm.51.2.07
References:
-
L. Barreira, D. Dragičević and C. Valls, Characterization of strong exponential dichotomies, Bull. Braz. Math. Soc. (N.S.) 46 (2015), 81-103.
MathSciNet
CrossRef
-
L. Barreira, D. Dragičević and C. Valls, Strong and weak (Lp,Lq)-admissibility, Bull. Sci. Math. 138 (2014), 721-741.
MathSciNet
CrossRef
-
L. Barreira, D. Dragičević and C. Valls, Exponential dichotomies with respect to a sequence of norms and admissibility, Internat. J. Math. 25 (2014), 1450024, 20 pp.
MathSciNet
CrossRef
-
C. Chicone and Y. Latushkin, Evolution semigroups in dynamical systems and differential equations, AMS, Providence, 1999.
MathSciNet
CrossRef
-
S.-N. Chow and H. Leiva, Existence and roughness of the exponential dichotomy for skew-product semiflow in Banach spaces,
J. Differential Equations 120 (1995), 429-477.
MathSciNet
CrossRef
-
S.-N. Chow and H. Leiva, Two definitions of exponential
dichotomy for skew-product semiflow in Banach spaces, Proc.
Amer. Math. Soc. 124 (1996), 1071-1081.
MathSciNet
CrossRef
- W. A. Coppel, Dichotomies in stability theory, Springer-Verlag, Berlin-New York, 1978.
MathSciNet
-
J. L. Daleckij and M. G. Kreĭn,
Stability of differential equations in Banach space, Amer.
Math. Soc., Providence, Rhode Island, 1974.
MathSciNet
- P. Hartman, Ordinary differential equations, Wiley, New-York, London,
Sydney, 1964.
MathSciNet
-
Yu. D. Latushkin and A. M. Stëpin,
Linear skew-product flows and semigroups of weighted
composition operators, in Lyapunov exponents,
Springer-Verlag, New-York, 1991.
MathSciNet
CrossRef
-
Y. Latushkin and R. Schnaubelt,
Evolution semigroups, translation algebra and exponential
dichotomy of cocycles, J. Differential Equations 159 (1999),
321-369.
MathSciNet
CrossRef
- J. L. Massera and J. J. Schäffer, Linear differential equations and functional
analysis. I, Ann. Math. (2) 67 (1958), 517-573.
MathSciNet
CrossRef
-
J. L. Massera and J. J. Schäffer, Linear differential
equations and function spaces, Academic Press, New-York, 1966.
MathSciNet
-
M. Megan and C. Stoica, Exponential
instability of skew-evolution semiflows in Banach spaces, Stud.
Univ. Babeş-Bolyai Math. 53 (2008), 17-24.
MathSciNet
-
O. Perron, Die
Stabilitätsfrage bei Differentialgleichungen, Math. Z.
32 (1930), 703-728.
MathSciNet
CrossRef
-
C. Preda, P. Preda and A. Petre, On the asymptotic behavior of an exponentially bounded, strongly continuous cocycle over a semiflow, Commun. Pure Appl. Anal. 8 (2009), 1637-1645.
CrossRef
-
P. Preda, A. Pogan and C. Preda, Schäffer
spaces and uniform exponential stability of linear skew-product
semiflows, J. Diff. Eq. 212(2005), 191-207.
MathSciNet
CrossRef
-
M. Reghiş, On nonuniform asymptotic stability, Prikl Math. Meh. 27 (1963), 231-243 (Russian) [English
transl. J. Appl. Math. Mech. 27(1963), 344-362].
MathSciNet
CrossRef
-
M. Rasmussen, Dichotomy spectra
and Morse decompositions of linear nonautonomous differential
equations, J. Differential Equations 246 (2009), 2242-2263.
MathSciNet
CrossRef
-
R. J. Sacker and G. R. Sell, Dichotomies for linear evolutionary equations in Banach spaces, J. Differential Equations 113 (1994), 17-67.
MathSciNet
CrossRef
- G. R. Sell and Y. You, Dynamics of evolutionary equations, Springer Verlag, New-York, 2002.
MathSciNet
CrossRef
Glasnik Matematicki Home Page