Glasnik Matematicki, Vol. 51, No. 2 (2016), 255-306.
THE SHAPES IN A CONCRETE CATEGORY
Nikica Uglešić
University of Zadar,
Pavlinovićeva 1, 23000 Zadar,
Croatia
e-mail: nuglesic@unizd.hr
Abstract.
We show under what conditions, and how, one can obtain a shape theory (various
shape theories) in a concrete category. The technique is, roughly speaking,
reduced to the quotients by congruences providing the objects of lower
cardinalities. The application yields the new (coarser) classifications in
every concrete category which admits sufficiently many non-trivial quotients.
Thus, the ordering, (ultra)pseudometric, uniform and topological structures,
as well as many algebraic and mixed (multi-) structures, give rise to
interesting results.
2010 Mathematics Subject Classification.
03E99, 06A99, 16D99,
16S99, 20B07, 46A99, 54B15, 54B30, 54C56, 54E99, 55P55.
Key words and phrases. (pointed) set, partially ordered set, (ultra)pseudometric space, topological
space, monoid, group, ring, module, vector space, equivalence relation,
congruence, (infinite) cardinal, concrete category, quotient object,
dimension, expansion, pro-category, shape category.
Full text (PDF) (free access)
DOI: 10.3336/gm.51.2.01
References:
- K. Borsuk, Concerning homotopy properties of
compacta, Fund. Math. 62 (1968), 223-254.
MathSciNet
- K. Borsuk, Theory of shape, Matematisk Inst. Aarhus Univ., Aarhus, 1971.
MathSciNet
- K. Borsuk, Theory of shape, Polish Scientific Publishers, Warszaw, 1975.
MathSciNet
- J.-M. Cordier and T. Porter, Shape theory. Categorical
methods of approximation, Ellis Horwood Ltd., Chichester, 1989. (Dover
edition, 2008.)
MathSciNet
- J. Dugundji, Topology, Allyn and Bacon, Boston, 1966.
MathSciNet
- J. R. Durbin, Modern algebra. An introduction, John Wiley
\& Sons, Inc., New York, 1992.
MathSciNet
- J. Dydak and J. Segal, Shape theory. An introduction,
Springer-Verlag, Berlin, 1978.
MathSciNet
- D. A. Edwards and H. M. Hastings, Čech and Steenrod
homotopy theories with applications to geometric topology, Springer-Verlag, Berlin, 1976.
MathSciNet
- S. Eilenberg and N. Steenrod, Foundations of algebraic
topology, Princeton University Press, Princeton, 1952.
MathSciNet
- H. Herlich and G. E. Strecker, Category theory. An
introduction, Allyn and Bacon Inc., Boston, 1973.
MathSciNet
- N. Koceić Bilan and N. Uglešić, The
coarse shape, Glas. Mat. Ser. III. 42(62) (2007), 145-187.
MathSciNet
CrossRef
- S. Mac Lane, Homology, Springer-Verlag, Berlin, 1995.
MathSciNet
- S. Mardešić and J. Segal, Shape theory. The
inverse system approach, Noth-Holland Publishing co., Amsterdam-New York, 1982.
MathSciNet
- I. Moerdijk, Prodiscrete groups and Galois toposes,
Nederl. Akad. Wetensch. Indag. Math. 51 (1989), 219-234.
MathSciNet
CrossRef
- W. Tholen, Pro-categories and multiadjoint
functors, Canad. J. Math. 36 (1984), 144-155.
MathSciNet
CrossRef
- N. Uglešić, On ultrametrics and
equivalence relations-duality, Int. Math. Forum 5
(2010), 1037-1048.
MathSciNet
- N. Uglešić and V. Matijević, On
expansions and pro-pro-categories, Glas. Mat. Ser. III. 45(65)
(2010), 173-217.
MathSciNet
CrossRef
- N. Uglešić and B. Červar, The concept
of a weak shape type, Int. J. Pure Appl. Math. 39
(2007), 363-428.
MathSciNet
Glasnik Matematicki Home Page