Glasnik Matematicki, Vol. 51, No. 1 (2016), 237-253.
NON-CUT, SHORE AND NON-BLOCK POINTS IN CONTINUA
Jozef Bobok, Pavel Pyrih and Benjamin Vejnar
Faculty of Civil Engineering,
Czech Technical University in Prague
Faculty of Mathematics and Physics,
Charles University in Prague,
118 00 Prague, Czech Republic
Faculty of Mathematics and Physics, Charles University in Prague,
118 00 Prague, Czech Republic
e-mail: vejnar@karlin.mff.cuni.cz
Abstract.
In a nondegenerate continuum we study the set of non-cut points. We show that it can be stratified by inclusion into six natural subsets (containing also non-block and shore points). Among other results we show that every nondegenerate continuum contains at least two non-block points. Our investigation is further focused on both the classes of arc-like and circle-like continua.
2010 Mathematics Subject Classification.
54F15, 54D10.
Key words and phrases. Continuum, shore point, non-cut point, arc-like continuum.
Full text (PDF) (free access)
DOI: 10.3336/gm.51.1.14
References:
- R. H. Bing, Some characterizations of arcs and simple closed curves, Amer. J. Math. 70 (1948), 497-506.
MathSciNet
CrossRef
- R. H. Bing, Embedding circle-like continua in the plane, Canad. J. Math. 14 (1962), 113-128.
MathSciNet
CrossRef
- R.H. Bing and F.B. Jones, Another homogeneous plane continuum, Trans. Amer. Math. Soc. 90 (1959), 171-192.
MathSciNet
CrossRef
- J. Bobok, R. Marciňa, P. Pyrih and B. Vejnar, Union of shore sets in a dendroid, Topology Appl. 161 (2014), 206-214.
MathSciNet
CrossRef
- J. Bobok, P. Pyrih and B. Vejnar, Half-homogeneous chainable continua with end points, Topology Appl. 160 (2013), 1066-1073.
MathSciNet
CrossRef
- K. Borsuk, Theory of retracts, Polish Scientific Publishers, Warsaw, 1967.
MathSciNet
- J. Doucet, Cardinality, completeness, and decomposability of sets of endpoints of chainable continua, Topology Appl. 60 (1994), 41-59.
MathSciNet
CrossRef
- J. Doucet, Sets of endpoints of chainable continua, Topology Proc. 32 (2008), 31-35.
MathSciNet
- E. E. Grace, Aposyndesis and weak cutting, in: General topology and modern analysis, Academic Press, New York, 1981, 71-82.
MathSciNet
- R. Escobedo, M. de Jesús López and H. Villanueva, Nonblockers in hyperspaces, Topology Appl. 159 (2012), 3614-3618.
MathSciNet
CrossRef
- A. Illanes, Finite unions of shore sets, Rend. Circ. Mat. Palermo (2) 50 (2001), 483-498.
MathSciNet
CrossRef
- A. Illanes and P. Krupski, Blockers in hyperspaces, Topology Appl. 158 (2011), 653-659.
MathSciNet
CrossRef
- J. Krasinkiewicz and P. Minc, Continua and their open subsets with connected complements,
Fund. Math. 102 (1979), 129-136.
MathSciNet
- R. Leonel, Shore points of a continuum, Topology Appl. 161 (2014), 433-441.
MathSciNet
CrossRef
- W. Lewis, Continuous curves of pseudo-arcs, Houston J. Math. 11 (1985), 91-99.
MathSciNet
CrossRef
- S. Macias, Topics on continua, Chapman and Hall/CRC, Boca Raton, 2005.
MathSciNet
CrossRef
-
S. B. Nadler, Continuum theory. An introduction, Marcel
Dekker, New York, 1992.
MathSciNet
- V. C. Nall, Centers and shore points of a dendroid, Topology Appl. 154 (2007), 2167-2172.
MathSciNet
CrossRef
- J. Nikiel and E. D. Tymchatyn, Sets of end-points and ramification points in dendroids, Fund. Math. 138 (1991), 139-146.
MathSciNet
- P. Pyrih and B. Vejnar, A lambda-dendroid with two shore points whose union is not a shore set, Topology Appl. 159 (2012), 69-74.
MathSciNet
CrossRef
- I. Rosenholtz, Absolute endpoints of chainable continua, Proc. Amer. Math. Soc. 103 (1988), 1305-1314.
MathSciNet
CrossRef
- T. Wazewski, Sur un continu singulier, Fundamenta Mathematicae 4 (1923), 214-245.
- G. T. Whyburn, Semi-locally connected sets, Amer. J. Math. 61 (1939), 733-749.
MathSciNet
CrossRef
- G. T. Whyburn, Analytic topology, American Mathematical Society, New York, 1942.
MathSciNet
Glasnik Matematicki Home Page