Glasnik Matematicki, Vol. 51, No. 1 (2016), 223-236.

GLOBAL INTEGRABILITY FOR SOLUTIONS TO BOUNDARY VALUE PROBLEMS OF ANISOTROPIC FUNCTIONALS

Gao Hongya, Liang Shuang and Cui Yi

College of Mathematics and Information Science, Hebei University, 071002 Baoding, China
e-mail: ghy@hbu.cn
e-mail: 944204016@qq.com
e-mail: 854304981@qq.com

Abstract.   This paper deals with solutions to boundary value problems of anisotropic integral functionals

I(u) = ∫Ω f(x,Du(x))dx,
with the energy f(x,z) has growth pi with respect to zi, like in
Ω ((1+∑j=1n |Dju|pj )(p1-2)/p1 |D1u|2 + ⋯ + (1+∑j=1n |Dju|pj )(pn-2)/pn |Dnu|2) dx.
We show that higher integrability of the boundary datum u* forces minimizers u to be more integrable. A similar result is obtained for obstacle problems.

2010 Mathematics Subject Classification.   49N60, 35J60.

Key words and phrases.   Global integrability, boundary value problem, anisotropic functional, obstacle problem.


Full text (PDF) (free access)

DOI: 10.3336/gm.51.1.13


References:

  1. H. Y. Gao, Regularity for solutions to anisotropic obstacle problems, Sci. China Math. 57 (2014), 111-122.
    MathSciNet     CrossRef

  2. H. Y. Gao, Q. H. Di and D. N. Ma, Integrability for solutions to some anisotropic obstacle problems, Manuscripta Math. 146 (2015), 433-444.
    MathSciNet     CrossRef

  3. H. Y. Gao and Q. H. Huang, Local regularity for solutions of anisotropic obstacle problems, Nonlinear Anal. 75 (2012), 4761-4765.
    MathSciNet     CrossRef

  4. H. Y. Gao, C. Liu and H. Tian, Remarks on a paper by Leonetti and Siepe, J. Math. Anal. Appl. 401 (2013), 881-887.
    MathSciNet     CrossRef

  5. D. Giachetti and M. M. Porzio, Local regularity results for minima of functionals of the calculus of variation, Nonlinear Anal. 39 (2000), 463-482.
    MathSciNet     CrossRef

  6. F. Leonetti and E. Mascolo, Local boundedness for vector valued minimizers of anisotropic functionals, Z. Anal. Anwend. 31 (2012), 357-378.
    MathSciNet     CrossRef

  7. F. Leonetti and S. Siepe, Global integrability for minimizers of anisotropic functionals, Manuscripta Math. 144 (2014), 91-98.
    MathSciNet     CrossRef

  8. F. Leonetti and F. Siepe, Integrability for solutions to some anisotropic elliptic equations, Nonlinear Anal. 75 (2012), 2867-2873.
    MathSciNet     CrossRef

  9. G. Stampacchia, Equations elliptiques du second ordre a coefficientes discontinus, Semin. de Math. Superieures 16, Univ. de Montreal, 1966.
    MathSciNet    

  10. Q. Tang, Regularity of minimizers of nonisotropic integrals of the calculus of variations, Ann. Mat. Pura Appl. 164 (1993), 77-87.
    MathSciNet     CrossRef

Glasnik Matematicki Home Page