Glasnik Matematicki, Vol. 51, No. 1 (2016), 197-221.
ON THE CORRESPONDENCE BETWEEN SPECTRA OF THE OPERATOR
PENCIL A-Λ B AND OF THE OPERATOR B-1A
Ivica Nakić
Department of Mathematics, University of Zagreb, 10 000 Zagreb, Croatia
e-mail: nakic@math.hr
Abstract.
This paper is concerned with the reduction of the spectral problem for symmetric linear operator pencils to a spectral problem for the single operator.
Also, a Rayleigh-Ritz-like bounds on eigenvalues of linear operator pencils are obtained.
2010 Mathematics Subject Classification.
47A56, 47A10.
Key words and phrases. Linear operator pencil, spectrum, Krein spaces.
Full text (PDF) (free access)
DOI: 10.3336/gm.51.1.12
References:
-
T. Ya. Azizov and I. S. Iokhvidov,
Linear operators in spaces with an indefinite metric,
John Wiley & Sons Ltd., Chichester, 1989.
MathSciNet
-
T. Ya. Azizov,
Operator theory in Krein spaces and operator pencils,
In H. Helson, B. Sz.-Nagy, F.-H. Vasilescu, and Gr. Arsene, editors,
Linear Operators in Function Spaces, volume 43 of Operator Theory:
Advances and Applications, Birkhäuser Basel, 1990, 111-121.
MathSciNet
-
H. Baumgärtel,
Analytic perturbation theory for matrices and operators,
Birkhäuser Basel, 1985.
MathSciNet
-
P. Binding, D. Eschwé and H. Langer,
Variational principles for real eigenvalues of self-adjoint operator
pencils,
Integral Equations Operator Theory 38 (2000), 190-206.
MathSciNet
CrossRef
-
P. Binding and B. Najman,
A variational principle in Kreĭn space
Trans. Amer. Math. Soc. 342 (1994), 489-499.
MathSciNet
CrossRef
-
P. Binding and B. Najman,
The minimal index of a self-adjoint pencil,
Glas. Mat. Ser. III 35(55) (2000) 25-44.
MathSciNet
-
P. Binding, B. Najman and Q. Ye,
A variational principle for eigenvalues of pencils of Hermitian
matrices,
Integral Equations Operator Theory 35 (1999) 398-422.
MathSciNet
CrossRef
-
J. Bognár,
Indefinite inner product spaces,
Springer-Verlag, New York, 1974.
MathSciNet
-
P. A. Cojuhari,
Estimates of the discrete spectrum of a linear operator pencil,
J. Math. Anal. Appl. 326 (2007), 1394-1409.
MathSciNet
CrossRef
-
B. Ćurgus and H. Langer,
A Kreĭn space approach to symmetric ordinary differential
operators with an indefinite weight function,
J. Differential Equations 79 (1989), 31-61.
MathSciNet
CrossRef
-
B. Ćurgus and B. Najman,
Quasi-uniformly positive operators in Kreĭn space,
in Operator theory and boundary eigenvalue problems (Vienna,
1993), Birkhäuser, Basel, 1995, 90-99.
MathSciNet
-
E. B. Davies,
Spectral theory and differential operators,
Cambridge University Press, Cambridge, 1995.
MathSciNet
CrossRef
-
V. A. Derkach and M. M. Malamud,
Generalized resolvents and the boundary value problems for
Hermitian operators with gaps,
J. Funct. Anal. 95 (1991), 1-95.
MathSciNet
CrossRef
-
A. Dijksma and H. S. V. de Snoo,
Symmetric and selfadjoint relations in Kreĭn spaces. I,
in Operators in indefinite metric spaces, scattering theory and
other topics (Bucharest, 1985), Birkhäuser, Basel, 1987, 145-166.
MathSciNet
-
A. Dijksma and H. Langer,
Operator theory and ordinary differential operators,
in Lectures on operator theory and its applications (Waterloo,
ON, 1994), Amer. Math. Soc., Providence, 1996, 73-139.
MathSciNet
-
M. V. Falaleev,
The Cauchy problem for a degenerate heat equation in Banach
spaces
Differ. Uravn. 44 (2008), 1120-1130.
MathSciNet
CrossRef
-
Y. L. Gao, Z. Wang and H. Y. Wu,
Spectrum of a self-adjoint operator pencil and its applications,
Chinese Ann. Math. Ser. A 33 (2012), 101-112.
MathSciNet
-
I. C. Gohberg and M. G. Kreĭn,
The basic propositions on defect numbers, root numbers and indices of
linear operators,
Amer. Math. Soc. Transl. (2) 13 (1960), 185-264.
MathSciNet
-
V. I. Gorbachuk and M. L. Gorbachuk,
Boundary value problems for operator differential equations,
Kluwer Academic Publishers Group, Dordrecht, 1991.
MathSciNet
CrossRef
-
A. N. Kočubeĭ,
Extensions of J-symmetric operators,
Teor. Funktsiĭ Funktsional. Anal. i Prilozhen.
31 (1979), 74-80, 167.
MathSciNet
-
M.G. Krein,
The theory of self-adjoint extensions of semi-bounded Hermitian transformations and its applications. I,
Mat. Sb. 20(62) (1947), 431-495.
MathSciNet
-
P. Lancaster, A. Shkalikov and Q. Ye,
Strongly definitizable linear pencils in Hilbert space,
Integral Equations and Operator Theory 17 (1993), 338-360.
MathSciNet
CrossRef
-
H. Langer,
Spectral functions of definitizable operators in Kreĭn spaces,
in Functional analysis (Dubrovnik, 1981),
Springer, Berlin, 1982, 1-46.
MathSciNet
-
H. Langer, R. Mennicken and C. Tretter,
A self-adjoint linear pencil Q-Λ P of ordinary
differential operators,
Methods Funct. Anal. Topology 2 (1996), 38-54.
MathSciNet
-
A. S. Marcus,
Introduction to the spectral theory of polynomial operator pencils,
translation of Mathematical monograph, vol. 71.
Amer. Math. Soc., Providence, 1988.
MathSciNet
-
A. B. Mingarelli,
Indefinite Sturm-Liouville problems,
in Ordinary and partial differential equations (Dundee, 1982),
Springer, Berlin, 1982, 519-528.
MathSciNet
-
K. Schmüdgen,
Unbounded self-adjoint operators on Hilbert space,
Springer, Dordrecht, 2012.
MathSciNet
CrossRef
-
P. Sorjonen,
On linear relations in an indefinite inner product space,
Ann. Acad. Sci. Fenn. Ser. A I Math. 4 (1979), 169-192.
MathSciNet
CrossRef
-
C. Tretter,
Linear operator pencils A-Λ B with discrete spectrum,
Integral Equations and Operator Theory 37 (2000), 357-373.
MathSciNet
CrossRef
-
O. Verdier,
Reductions of operator pencils,
Math. Comp. 83 (2014), 189-214.
MathSciNet
CrossRef
-
J. Weidmann,
Lineare Operatoren in Hilberträumen.
B. G. Teubner, Stuttgart, 1976.
MathSciNet
Glasnik Matematicki Home Page