Glasnik Matematicki, Vol. 51, No. 1 (2016), 117-123.
A NOTE ON AUTOMORPHISMS OF FINITE P-GROUPS
Gustavo A. Fernández-Alcober and Anitha Thillaisundaram
Department of Mathematics, University of the Basque Country UPV/EHU, 48080 Bilbao, Spain
e-mail: gustavo.fernandez@ehu.eus
Mathematisches Institut,
Heinrich-Heine Universität, 40225 Düsseldorf, Germany
e-mail: anitha.t@cantab.net
Abstract.
Let G be a finite non-cyclic p-group of order at least p3. If G has an abelian maximal subgroup, or if G has an elementary abelian centre with CG(Z(φ(G))) ≠ φ(G), then |G| divides |Aut(G)|.
2010 Mathematics Subject Classification.
20D15, 20D45.
Key words and phrases. Finite p-groups, automorphisms.
Full text (PDF) (free access)
DOI: 10.3336/gm.51.1.07
References:
- J. E. Adney and T. Yen, Automorphisms of
a p-group, Illinois J. Math. 9 (1965), 137-143.
MathSciNet
CrossRef
- M. Couson, On the character degrees and automorphism groups of finite p-groups by coclass, PhD Thesis, Technische Universität Braunschweig, Germany, 2013.
- M. Deaconescu and G. Silberberg, Noninner automorphisms of order p of finite p-groups, J. Algebra 250 (2002), 283-287.
MathSciNet
CrossRef
- B. Eick, Automorphism groups of 2-groups, J. Algebra 300 (2006), 91-101.
MathSciNet
CrosRef
- R. Faudree, A note on the automorphism group
of a p-group, Proc. Amer. Math. Soc. 19 (1968),
1379-1382.
MathSciNet
CrossRef
- W. Gaschütz, Nichtabelsche p-Gruppen
besitzen äussere p-Automorphismen (German), J. Algebra
4 (1966), 1-2.
MathSciNet
CrossRef
- J. González-Sánchez and A. Jaikin-Zaipirain, Finite p-groups with small automorphism group,
Forum Math. Sigma 3 (2015), e7, 11 pp.
MathSciNet
CrossRef
- K. G. Hummel, The order of the automorphism
group of a central product, Proc. Amer. Math. Soc. 47
(1975), 37-40.
MathSciNet
CrossRef
- I. M. Isaacs, Finite group theory, Amer. Math. Soc., Providence, 2008.
MathSciNet
CrossRef
- O. Müller, On p-automorphisms of
finite p-groups, Arch. Math. (Basel) 32 (1979), 533-538.
MathSciNet
CrossRef
- A. D. Otto, Central automorphisms of a finite
p-group, Trans. Amer. Math. Soc. 125 (1966), 280-287.
MathSciNet
CrossRef
- A. Thillaisundaram, The automorphism group for
p-central p-groups, Int. J. Group Theory 1 (2012), 59-71.
MathSciNet
- U. H. M. Webb, An elementary proof of Gaschütz'
theorem, Arch. Math. (Basel) 35 (1980), 23-26.
MathSciNet
CrossRef
- M. K. Yadav, On automorphisms of finite p-groups,
J. Group Theory 10 (6) (2007), 859-866.
MathSciNet
CrossRef
Glasnik Matematicki Home Page